TIMBER MEASUREMENTS SOCIETY

Fall Meeting October 28-29 2008

Review of Various Wood Measurement Methods

Used Today in the Pulp & Paper Industry

tian Paceot - Woodtoch Chilo

Christian Paccot – Woodtech, Chile

Summary

- o Woodtech
- o Why measure well?
- o Comparing units
- o Comparing methods
- o Conclusion

Woodtech

- Specialist in Automatic Wood Measurement Systems since 1990
 - Created from Excelsys' association with the largest Financial Group in Chile - main shareholder of ARAUCO

- Products specifically for wood measurement on Trucks
 - Measurement of solid and frame volume, as well as the biometric characteristics of the wood.

🐝 MOGAI

SKSVISION SYSTEMS

AN EXCELSYS COMPANY D-401

- Presence today : Latin American → Product for the World
- Main Partners
 - Strategic partnership with:
 - SKS Vision Systems (Finland)
 - Mogai (Brazil)
 - Endeavor enterprise

Why Measurement of Wood is important?

Cost of the wood:

- → > 50% Production Cost
- \rightarrow 20 100 US\$ Millions/Year

Approximate breakdown of the cost:

- 1/3 Cost = Wood
- 1/3 Cost = Harvest
- 1/3 Cost = Transport

THE CORRECT MEASUREMENT OF WOOD IS

IMPORTANT

... even if mill owns the forest

AN EXCELSYS COMPANY

Some Consequences – Units /Methods Problems

- Wood Measurement Costs
- Important differences between:
 - Forest Inventories $\leftrightarrow \rightarrow$ Wood at the mill
 - Wood received $\leftarrow \rightarrow$ Wood Payed/Mill inventories
- Perverse incentives → Non-equitable payment
- Fraud Risks

IMPORTANT EFFECTS ON WOOD COST \rightarrow ON PRODUCTION COSTS

•Why measure well?

METHOD

2.

3.

4.

5.

UNIT

"The unit of quantity must be OBJECTIVE, REPRODUCIBLE, EASILY AND COST-EFFECTIVELY DETERMINED and FAIR

to both the buyer and seller."

•Measuring pulpwood quantity, Russell Morkel (1998)

- **Objective:** Does not depend on human factors.
 - Reproducible: No variation with exogenous factors.
- Efficient: Quick and low cost.
- Fair: Equitable for both sides...
- Incentive: Does not create perverse incentives

D-401

Agenda

- o Woodtech
- o Why measure well?
- o Comparing units
- o Comparing methods
- o Conclusion

Agenda

o Woodtech

- o Why measure well?
- o Comparing units
 - o Weight
 - o Frame Volume
 - o Solid Volume
- o Comparing methods
- o Conclusion

Comparing units - WEIGHT

AN EXCELSYS COMPANY D-401-01

- \rightarrow Weight is not related to VALUE water and density
- \rightarrow Weight measurement is not reproducible in time drying
- \rightarrow Weight produces perverse incentives transportation costs

SAWMILLS:

 \rightarrow Weight doesn't provide information on wood biometrics

SAME WEIGHT DIFFERENT VALUE

WEIGHT is not an adequate unit for wood Measurement

Agenda

- o Woodtech
- o Why measure well?
- o Comparing units
 - o Weight
 - o Frame Volume
 - o Solid Volume
- o Comparing methods
- o Conclusion

Value Wood by FRAME VOLUME

- Frame Volume measurement includes air spaces between logs.
- Air spaces depend of:
 - Diameter distribution
 - Arrangement of logs in the pile
 - Length of the logs
 - Knots, crook and sweep factors

FRAME VOLUME is not an adequate unit for wood measurement

D-401-01

Agenda

o Woodtech

- o Why measure well?
- o Comparing units
 - o Weight
 - o Frame Volume
 - o Solid Volume
- o Comparing methods
- o Conclusion

Comparing units

Solid Volume

SOLID VOLUME

Fibre **VALUE**

Water NO VALUE

...BUT VOLUME REMAINS CONSTANT

Solid Volume is related to fibre quantity (not water quantity) Solid Volume is related to Value of measuring pulpwood by volume

Sistic hat wature in a main se wachanged [...] from point of measure

Solid Volume is reproducible point of processing"

Measuring pulpwood quantity, Russell Morkel (1998)

SOLID VOLUME is a reasonable unit for wood measurement

.....but it is not a value easy to measure

D-401-01

Agenda

- o Woodtech
- o Why measure well?
- o Comparing units
- Comparing methods
- o Conclusion

Comparing methods \rightarrow Solid Volume

Indirect Methods with Sampling

- 1.Sampling Systems
- 2. Frame Volume
 - + Conversion Factor
 - + Piece Scaling
- 3. Weight Scales
 - + Piece Scaling
 - + Immersion systems

Direct Measurement Methods

1. Drive-Through Scanners

Comparing Methods – Sampling

Results could be manipulated by changing sampling intensity along the year.

			Regular Sampling			Biased Sampling			
		Density	Trucki Sample	d	Cumulated Con∨ersion factor	Truc	s Sam	pled	Cumulated Con∨ersion factor
	January	900	10	Γ	800		20		800
	February	880	10	T	1242		18		891
	March	840	10		1332		18		874
	April	730	10		1072		4		865
	May	690	10		913		4		854
	June	660	10	Т	805		4		842
	July	640	10		726		4		831
	August	600	10		666		4		819
	September	660	10	Т	621		4		811
	October	710	10	Т	587		4		806
	November	840	10	Γ	671		18		812
	December	880	10		747		18		822
		120							
	difference:	10%							
In this examp	ole, 120	trucks	have	е	been san	npl	ed i	n e	each case
	\rightarrow 1	0 % C	Differe	er	nce in the	Сс	onve	ers	ion Facto
							V	NC	

AN EXCELSYS COMPANY D-401-01

Comparing methods \rightarrow Solid Volume

Indirect Methods with Sampling

1.Sampling Systems

- 2. Frame Volume
 - + Conversion Factor
 - + Piece Scaling
- 3. Weight Scales
 - + Piece Scaling
 - + Immersion systems
- Direct Measurement Methods
 - 1. Drive-Through Scanners

•Comparing methods

•Manual Frame Volume

• What is the **width** of this truck?

Comparing methods

Frame Volume+ Piece Scaling

- Used in some scandinavian countries
- Frame volume is a better unit than weight
- The fit between frame volume/solid volume (15% variability) is much tighter than the weight/solid volume one (100% variability)
- More resource-demanding than weight scale sampling system but better and fairer results can be achieved.

D-401-01

Comparing methods Manual Methods vs Logmeter Measurement of Solid Volume 120 108 110 104 99 100 94 m3 90 80 70 60 Smalian Huber Logmeter New ton 15% difference between the most-used manual methods. D-401-01 AN EXCELSYS COMPANY Study performed in the ARAUCO Nueva Aldea Mill, Chile in September 2007

Comparing methods \rightarrow Solid Volume

Indirect Methods with Sampling

- **1.Sampling Systems**
- 2. Frame Volume
 - + Conversion Factor
 - + Piece Scaling
- 3. Weight Scales
 - + Piece Scaling
 - + Immersion systems

Direct Measurement Methods

1. Drive-Through Scanners

Comparing methods

Weight Scale + Piece Scaling

- Weight relates poorly to volume
- Risk of problems whenever context changes (Moutain Pine Beetle, etc)
- Easy to manipulate, perverse incentives
- Piece scaling is expensive
- Piece scaling has its own limitations (see section)

INDIRECT METHODS Solid Volume from Weight : Conversion Factor XILÓMETRO Laboratory - Volume calculated through water displacement - Calculated from samples less than 0.1% of the wood received (30 pieces – 30 cm) every 1200 MCS The volume of the immersed samples equals the volume of the YODE displaced water OTO AN EXCELSYS COMPANY

INDIRECT METHODS

Weight to Solid Volume: conversion factor calculation

XILÓMETRO Laboratory

- Samples comes only from the ends of the logs \rightarrow **NOT** representative
- Sample storage administrative process \rightarrow doubts about the origin
- Non-auditable process Risk of fraud

INDIRECT METHODS

Weight from solid volume: conversion factor

INMERSION

- Uses the Archimedes principle Perfect Method?
- Crane on a scale, or weight-measuring cell on the crane
- The sample is weighed out of and in the water
- Weight difference \rightarrow volume displaced = VS

P1 = Crane + Claw + Wood P2 = Crane + Claw + Wood - Weight of displaced water

Comparing methods \rightarrow Solid Volume

Indirect Methods with Sampling

- **1.Sampling Systems**
- 2. Frame Volume
 - + Conversion Factor
 - + Piece Scaling
- 3. Weight Scales
 - + Piece Scaling
 - + Immersion systems

Direct Measurement Methods 1. Drive-Through Scanners

Comparing methods

Drive Through Scanners

- Solid Volume and Frame Volume
- Biometric Characteristics
- 100% Auditable
- 100% Objective
- Low running costs

The only non-sample system

for SOLID volume

Will be detailed more in next presentation

Correctly quantify wood is important ...But far from simple

There is no perfect method

...But there are advancements.

AN EXCELSYS

D-401-01

