Kim Iles ...

Not a Scaler

Forest Biometrician

Sampling Consultant / Teacher

My Points today

1) The form of the numbers stated is misleading

2) Sampling Error is also computed wrong in scaling and timber cruising

A "Sampling Error" is multiple ("t") Standard Errors

SE is about variability of an average around a line

The historical "probable error" is the 50% level or $\mathrm{t}=0.7$

It was the "coin-flip" answer
(just like the average is) $\pm 4 \%$, for example

The 95% or $t=2$ level is :

The amount of error you are pretty sure you DO NOT have. $\pm 12 \%$, for example

Silly - right ???

The probable error is the most "honest" level to use in my opinion.

It is about $1 / 3$ the 95% level. 12% vs. 4\% - think about it.

At least use the $\mathrm{t}=1$ level 6\%

The Sampling Error is supposed

to indicate how close you are to a total or average.

How far is "typical" ??

Where would YOU draw the line to indicate "the" error in this series of check cruises ???

Variability

Result

Effort
units

Variability

 Result

Effort
PERCENT

The sampling error computed with the random equation

The SD around the line is divided by the square root of sample size to get one SE

SD is the variability of items around a line

If SD or variability is "around a line"

then
what line ???

How would you assign values to the new loads of logs ??

Like This ??

With these errors ??

How about using the last measurement ?? "Prior load expansion"

You could easily see how to make smaller errors than with the last sample load, but SE is NOT the difference from the overall mean.

How much difference would it make ?

$$
\begin{array}{|lr}
\hline & \begin{array}{r}
2006-7 \\
22-1030
\end{array} \\
\text { Usual SD } & 0.1034 \\
\text { Line SD } & 0.0439 \\
\text { efficiency } & \longrightarrow 5.6 \\
\hline
\end{array}
$$

The least efficient (average=2.5)

The point is that the usual RANDOM sample equation Is just WRONG

Exactly the same thing is true with forest sampling with grids or other systematic samples.

The actual sampling error vs the random equation

SAMPLE SIZE

- 1) The actual sampling error is overestimated with random sample formulas
- 2) The " 95% confidence limit" is misleading to almost everyone.
-3) Most weight scaling is too intensive.

Thanks for having me here.

