TMS
Thursday 10:30 AM April 8, 2010

Log Yard Inventory Measurements

Lessons Learned

John Calkins, Check Scaler/ Log Quality
Simpson Lumber Company
Tacoma, Shelton, Longview
Washington

Goals

1. Improve the physical log deck measure for more accurate log accounting.
2. Take more measurements using one person.
3. Devise a procedure that is easy to understand.
4. Devise a procedure that is acceptable to Accountants and Auditors.

Commencement Bay Operations

Mountains to Measure

Always Changing

Where do you start?

Study how each log yard is run. Watch how they build and use decks. Understand why they have to build them certain ways.

Learn what the Operators do by watching them in action

Bring the Operators into the project.

Without their co-operation, accountability and safety could be jeopardized

Seek their advice and respect their judgment, Iater this will pay off with co-operation.

Try to see things from their perspective.

An experienced Operator will build decks consistently.

Study the log accounting system. See how flexible they are to help with test data.

Deck Summary Report
Deck: W999
Finished Date:
Hot Deck Date:

$\frac{T b l}{\text { DS }}$	$\frac{\text { Weight Tkt }}{\text { Y- W999 }}$	Trip Ticket	Adj	Ticket Date	Gross Vol	Net Vol	Util Vol	Net Wat
P	W00005	WY50580		9/18/2008	6,380	6,100	40	49,999
P	W00005	13426		12/4/2008	5,570	5,480	0	49,999
P	W00005	13469		12/4/2008	6,270	6,200	20	49,999
P	W00008	GD528875		10/1/2008	5,560	5,450	0	49,999
P	W00009	13605		12/9/2008	5,700	5,440	190	49,999
P	W00009	13639		12/9/2008	5,470	5,180	270	49,999

There are physical limits to how the machines build decks. Look how close the dimensions can be, such as the angle of these two decks.

Recognize the geometric shapes

It's easy to explain this intersection and repeat the procedure.

Now you can use the simple geometric areas of right triangles and rectangles to figure the Square Foot Surface area of any log deck.

Vantage points are key

Learn why they build decks the way they do. Try and spot the geometric shapes.

This method is the easiest to understand even under complex shapes.

So at what point do we stop measuring the finer detail and use reasonable incremental measurements?

This deck was measured with a height pole and a 50' tape with the observer standing well away from the deck to see the geometric shapes.

Hastings Pole

Try new ideas

Each deck has its own challenges.

Keep looking for the best vantage point

The weather plays a large roll in the motivation to find a better way to measure these

New Ideas spring from tried methods.

Looking for the Right Method

This is an accepted method used to visually fold the triangle ends up in the field then measure at regular intervals to average the top rectangle shape of the deck.

I used a camera and graphs to determine the size of decks by painting physical marks on the decks to line up with the graph.

> I broke down the decks into smaller geometric shapes to see how much error there is in visually creating the larger Right Triangle and Rectangle shapes.

Clinometer procedure

First Clinometer and Rangefinder

Second Clinometer

Clinometer and 50' Tape

Clinometer Worksheet Method 1

	A	B	c	D	E	F	G
1	Method 1						
2	Deck Measurements		Clinometer Measurements				Height
3	Deck Parts	ClinDistToDeck	Down - Up+ Below Eye Above Eye				
4	Average Height	25	10	17	4.4	7.6	12.1
5		25	5	24	2.2	11.1	13.3
6		25	3	25	1.3	11.7	13.0
7		25	1	29	0.4	13.9	14.3
8		25	6	28	2.6	13.3	15.9
9		25	2	28	0.9	13.3	14.2
10		25	5	20	2.2	9.1	11.3
11		25	6	19	2.6	8.6	11.2
12		25	5	26	2.2	12.2	14.4
13							
14							
15	Average Deck Height						13.3
16	Big Rectangle Length	390					
17	Triangle 1 Length	34	17				
18	Triangle 2 Length	18	9				
19	Total Deck Length		416		Total Deck S	Square Feet:	5,529.1

Clinometer Worksheet Method 2

Method 2								
LLOP Deck Measuremer	13	Clinometer Measurements				Height	Lgth	Area
Deck Parts	ClinDistToDeck	Down -	Up+	Below Eye	Above Eye			
Big Triangle Height	25	12	40	5.3	21.0	26.3	78	1025.36
Big Rectangle Height	25	12	40	5.3	21.0	26.3		
	25	12	40	5.3	21.0	26.3		
	25	12	39	5.3	20.2	25.6		
	25	12	40	5.3	21.0	26.3		
					Average	26.1	71	1853.68
Small Triangle (Height -11)	25	12	40	5.3	21.0	15.3	40	305.828
Small Rectangle Height						11.0	40	440
Total SqFt Area								3624.87

Clinometer Worksheet Method 3

45	Clinometer Measurements				Height	Width	Area
46	Down -	Up+	Below Eye	Above Eye			
47	12	15	5.3	6.7	12.0		0
48	12		5.3	-	5.3		0
49	12		5.3	-	5.3		0
50	12		5.3	-	5.3		0
51	12		5.3	-	5.3		0
52	12		5.3	-	5.3		0
53	12		5.3	-	5.3		0
54	12		5.3	-	5.3		0
55	12		5.3	-	5.3		0
56	12		5.3	-	5.3		0
57	12		5.3	-	5.3		0
58	12		5.3	-	5.3		0
59	12		5.3	-	5.3		0
60	12		5.3	-	5.3		0
61	12		5.3	-	5.3		0
62	12		5.3	-	5.3		0
63	12		5.3	-	5.3		0
64	12		5.3	-	5.3		0
65	12		5.3	.	5.3		0
66	12		5.3	-	5.3		0
67	12		5.3	-	5.3		0
68	12		5.3	-	5.3		0
69							
70							0

Constantly changing

Inacceable

TruePulse360 Rangefinder

TP 360 - Nomad - GPS

The TP 360 appears be the ultimate device for my project

Understand the devices

TP360 Data Collection

STrupulse - HyperTerminal	- $\square^{1} \times$
Ele Edt yiew Call Iransfer Help	

\$PLTIT, HV, 43.50,F,0.00,D,7.50,D,43.50, F*65 \$PLTIT, HV, $40.50, F, 0.00, D, 26.40, D, 45.50, F * 52$ \$PLTIT, HV, $40.50, F, 0.00, D, 19.80, D, 43.00, F * 51$ \$PLTIT, HV,41.00,F,0.00,D,27.20,D,46.00,F*57 \$PLTIT, HV, $39.50, F, 0.00, D, 27.40, D, 44.50, F * 5 C$ \$PLTIT, HV,41.50,F,0.00, D, 23.40, D, 45.50,F*56 \$PLTIT, HV, 41.50, F, 0.00, D, 29.60, D, 48.00,F*56 \$PLTIT,'HV, $47.00, F, 0.00, D, 5.50, D, 47.00, F * 67$ \$PLTIT, HV, $40.50, F, 0.00, D, 15.20, D, 42.00, F * 56$
\$PLTIT, HV, 43.50, F, 0.00,D,1.00,D, 43.50, F*66 \$PLTIT, HV, $40.50, F, 0.00, D, 3.60, D, 40.50, F * 62$
\$PLTIT, HV, 0.50,F, $0.00, \mathrm{D},-80.60, \mathrm{D}, 3.50, \mathrm{~F} * 77$
\$PLTIT, HV , 0.50,F,0.00, D, $-79.90, \mathrm{D}, 3.50, \mathrm{~F} * 7 \mathrm{E}$
\$PLTIT, HV , 0.50,F,0.00, D, -80.60, D, 3.50, F*77
\$PLTIT, $\mathrm{HV}, 138.50, \mathrm{~F}, 0.00, \mathrm{D},-1.00, \mathrm{D}, 138.50, \mathrm{~F} * 4 \mathrm{~B}$
\$PLTIT, HV , 31.50,F,0.00, D ,-0.90,D, 31.50,F*43
-

Connected 0:16:59 Auto detect 4800 8-N-1 |SCROLL CAPS NUM |Capture Prink echo

Deck Measurement Tools

HP200 Data Comm

HP200 Data Collection

K51				-			f_{x}					
	A	B	C	D	E	F	G	H	1	J	K	L
1	SPLTIT	HV	18.5 F	F	14.5 D	D	-14.8	D	19	F*43		
2	SPLTIT	HV	18 F	F	13.1 D	D	-14.8 D	D	19	F*45		
3	SPLTIT	HV	18 F	F	11.6 D	D	-14.7	D	18.5	F*48		
4	SPLTIT	HV	12.01 F	F	3.2 D	D	-15.4	D	12.01	$\mathrm{F}^{*} 78$		
5	SPLTIT	HV	22.5 F	F	9.8 D	D	-9.5	D	23	F*43		
6	SPLTIT	HV	23.5 F	F	7 D	D	-7.7	D	23.5	F* 4 D		
7	SPLTIT	HV	26.5 F	F	7.50	D	-2.3	D	26.5	F*49		
8	SPLTIT	HV	24.01 F	F	4.1 D	D	-4.4	D	24.01	$\mathrm{F}^{*} 4 \mathrm{~F}$		
9	SPLTIT	HV	24 F	F	6.80	D	-4.9	D	24	F*49		
10	SPLTIT	HV	24 F	F	9.40	D	-4.8	D	24.5	$\mathrm{F}^{*} 4 \mathrm{E}$		
11	SPLTIT	HV	17.01 F	F	13.6 D	D	-4.5	D	17.01	$\mathrm{F}^{*} 7 \mathrm{~F}$		
12	SPLTIT	HV	16 F	F	14.2 D	D	-3.8	D	16	F=76		
13	SPLTIT	HV	14.5 F	F	14.9 D	D	-4.6	D	14.5	F=74		
14	SPLTIT	HV	14 F	F	15.1 D	D	-5.7 D	D	14	F*7D		
15	\$PLTIT	HV	15.01 F	F	15.2 D	D	-5.9 D	D	15.01	F*70		
16	SPLTIT	HV	24.01	F	17 D	D	-4.6 D	D	24.01	F*7E		
17	SPLTIT	HV	18.5	F	18.4 D	D	-3.8	D	18.5	F"7C		
18	SPLTIT	HV	28.5	F	349.9 D	D	-0.7 D	D	28.5	$\mathrm{F}^{*} 4 \mathrm{~A}$		
19	SPLTIT	HV	19.01	F	351.6 D	D	-3.8	D	19.01	$\mathrm{F}^{*} 40$		
20	SPLTIT	HV	18.5	F	352.6 D	D	-3.9 D	D	18.5	$\mathrm{F}^{*} 42$		
21	SPLTIT	HV	18.5	F	351.4 D	D	-4.1	D	18.5	$\mathrm{F}^{*} 4 \mathrm{C}$		
22	SPLTIT	HV	18.01	F	349.1 D	D	-4.3	D	18.01	$\mathrm{F}^{*} 42$		
23	SPLTIT	HV	16	F	347.4 D	D	-5.2	D	16	F*49		
24	SPLTIT	HV	5.5	F	9.9 D	D	-4D	D	5.5	$\mathrm{F}^{*} 4 \mathrm{E}$		
25	SPLTIT	HV	5.5	F	9.1 D	D	-4.2	D	5.5	F*44		
26	\$PLTIT	HV	5	F	6.9 D	D	-5.4 D	D	5	F*44		
27	SPLTIT	HV	5	F	4 D	D	-5.4	D	5	$\mathrm{F}^{*} 4 \mathrm{~F}$		
28	SPLTIT	HV	5	F	2.2 D	D	-4.9	D	5	F"47		
29	SPLTIT	HV	5	F	1.10	D	-4.9 D	D	5	$\mathrm{F}^{*} 47$		
30	SPLTIT	HV	23.01	F	5.1 D	D	-4.9 D	D	23.01	F*43		
31	SPLTIT	HV	23.5	F	356.6 D	D	-2.6 D	D	23.5	F*48		
32	SPLTIT	HV	23	F	352.5 D	D	-2.9 D	D	23	F*40		

TP360 Worksheet for Method 1

S5					
LGTH	DOWN	UP	HEIGHT	SqFt	
-	3.5	(3.5)	-		
14.0	3.5	6.0	9.5	67	
8.0	3.5	5.5	9.0	74	
23.0	3.5	(3.5)	-	104	
TOTAL				$\mathbf{2 4 4}$	

S7				
LGTH	DOWN	UP	HEIGHT	SqFt
-	5.5	(5.5)	-	
27.0	5.5	4.5	10.0	135
23.4	5.5	5.0	10.5	240
23.4	6.0	3.5	9.5	234
23.4	6.0	4.0	10.0	228
23.4	5.5	6.0	11.5	251
23.4	4.5	5.5	10.0	251
23.4	5.0	5.0	10.0	234
23.4	6.0	7.0	13.0	269
23.4	6.0	7.5	13.5	310
42.0	6.0	(6.0)	-	221
TOTAL				2,372

TP360 Worksheet for Method 2

L2 LGTH	DOWN	UP	HEIGHT	SqFt
-	5.5	5.5	11.0	
65.0	5.5	20.0	25.5	1,186
24.3	5.5	19.0	24.5	606
24.3	5.5	21.5	27.0	624
24.3	5.5	22.5	28.0	667
24.3	5.5	21.5	27.0	667
24.3	5.5	20.0	25.5	637
24.3	5.5	20.5	26.0	624
24.3	5.5	20.5	26.0	631
24.3	5.5	19.0	24.5	612
27.0	5.5	5.5	11.0	479
TOTAL				$\mathbf{6 , 7 3 4}$

TP360 Worksheet for Method 3

C1S NEW				
LGTH	DOWN	UP	HEIGHT	SqFt
-	4.0	(4.0)	-	
17.0	4.0	9.0	13.0	110.5
18.0	4.0	9.5	13.5	238.5
18.0	4.5	7.0	11.5	225.0
18.0	5.0	8.5	13.5	225.0
18.0	5.0	12.0	17.0	274.5
18.0	4.5	12.5	17.0	306.0
18.0	4.5	10.5	15.0	288.0
24.0	4.5	(4.5)	-	180.0
149.0				
TOTAL				1,847.5

$$
\begin{aligned}
& \text { UNDER } \\
& \text { CONSTRUCTION }
\end{aligned}
$$

C1S NEW				
73.0	8.0	8.3	66.2	
71.5	9.5	8.3	78.6	
68.0	13.0	8.3	107.6	
69.5	11.5	8.3	95.2	
67.0	14.0	8.3	115.9	
69.5	11.5	8.3	95.2	
70.0	11.0	8.3	91.1	
	68.0	13.0	8.3	107.6
	68.0	13.0	8.3	107.6
	65.5	15.5	8.3	128.3
	65.5	15.5	8.3	128.3
	68.5	12.5	8.3	103.5
	66.0	15.0	8.3	124.2
	64.0	17.0	8.3	140.7
	66.5	14.5	8.3	120.0
	65.5	15.5	8.3	128.3
	70.0	11.0	8.3	91.1
	73.5	7.5	8.3	62.1
COUNT	18.0			
Lgth	149.0			
Int	8.3			
SqFt			$\mathbf{1 , 8 9 1 . 5}$	

END

