Sample Size

Kim Iles
Sampling specialist
Nanaimo, BC, Canada

What do you want?

• You <u>want</u> to be <u>comfortable</u> with the "precision" (error %) of the result.

 You want to be confident enough to make decisions (if there are consequences ... otherwise who cares?). You do <u>not</u> want to put in plots after they no longer do you any good.

You do <u>not</u> want to waste time, money, or staff. (<u>or</u> to see them idle)

- PS there is no minimum sample size
- Well, 1, I suppose
- 2 if you want to do statistics
- ... but nobody *wants* to do statistics.

How does <u>Kim</u> decide?

What is traditional? Uggg

What is "comfortable"? hmmmm

When is the answer "stable enough" to make the decision?

pretty good criteria ...

When does the answer stabilize?

2nd try, with real data

3d try

A typical (bad) question ...

What sampling error do you "NEED"?

Nobody ever knows.

... EVER ...

It might be in legislation, or a manual, but that is NOT what you "need".

The RIGHT question

- Here is the sampling error we got.
- Here is the sampling error we will get.
- Here is the sampling error we can <u>afford</u> to get.
- CAN YOU <u>LIVE</u> WITH THAT ???

What is the "Probable Error"

- It's like the average.
- "Here is a error, chances are about equal that the <u>actual</u> error is above or below that number".
- Statistics used that for centuries.
- so simple, really

Enter the "95% Sampling Error"

- This is the sampling error that we do <u>NOT</u> have.
- It's less than that 95% of the time.
- The full description is ...
- "This is the Sampling Error that we are very sure (95%) that we do
 NOT have it's less than that".

Example of Actual Errors

If you must use an equation

$$\sqrt{\frac{\text{CV}}{\sqrt{\text{samplesize}}}}$$
 * .7 to get Probable error

$$\sqrt{\frac{\text{CV}}{\sqrt{\text{samplesize}}}} * \sim 2 \text{ to get } 95\%$$

"Improbable" error

Problem
$$\longrightarrow \frac{20\%}{\sqrt{25}} = 4\%$$
 Result

*
$$.7 = SE\%$$
 of **2.8%** (50% level)

* 2 = SE% of 8% (95% level)

What are the primary "terms" is stats?

Only 2, really

Suppose the data is variable by ± 6 firkins per square rod.

The Population (CV) stabilizes Standard Error (SE%) reduces to 0%

Diminishing Returns set in

PS ...

 The <u>actual</u> error is a <u>lower</u> with Systematic Sampling.

- Sometimes a LOT lower.
- So ... use Systematic Sampling (when you can).

Random Sampling

- Is a dog, and always has been.
- It is valued for having simple math,
 nothing else.
- GPS makes it more possible, in case there is an <u>emotional</u> reason to sample randomly.

Random Sampling

- Random Sampling is loved by Rookies, <u>nobody</u> else.
- Less efficient, harder to do, almost impossible to catch errors or missed plots, more expensive, less credible.
- Does that sound smart ??

What is the statement when using systematic sampling?

from

"We are <u>exactly</u> 95% sure that the error is less than 6%".

to

"We are more than 95% sure that the error is less than 6%".

This is just about all you need to know about statistics and sampling.

The final issues are clear.

- 1) What do we need?" is the wrong question.
- 2) The "95% level" is misleading.
- 3) Systematic samples give better results than the equations show.
- 4) Most of our procedures are habit, not logic.

- 5) Most people oversample, often greatly.
- 6) Sample size is a <u>business</u> decision. Think of it that way.
- 7) Don't beat the problem to death by lots of measurements. THINK, and sample cleverly.

Thanks Questions ??