Recovery of Simulated Sawn Logs with Sweep and Ovality

Robert A. Monserud PNW, Portland, OR Christine Todoroki FRI, Rotorua, NZ

The Problem (Sweep = deflection from straight)

The Problem

- Todoroki 1998: "Not all logs are straight."
- If curve-sawing not available, need to quantify expected product loss due to sweep
- Difficult to obtain a balanced sample of logs with sweep
- Unable to break confounding between sweep and other factors

The Solution: Sawing Simulation

- Digitize a representative sample of logs
- Location \& size of all knots, defects
- Systematically bend digitized logs (parabola)
- All logs retain original branching structure
- Number, size, shape, location at pith
- Saw digital logs into boards with a sawing simulator: AUTOSAW

Data Collection: Log Diagramming

Digitized Log illustrating both sweep and out-of-roundness

Benefits of sawing simulation

- Sawing parameters can be held constant
- Log variables, such as sweep, can be examined in isolation of other confounding factors
- Logs can be repeatedly sawn in different ways
- Able to explore the full range of variation
- Experimental Design is balanced

Material

- 52 Western Hemlock logs (Tsuga heterophyla)
- All knots and defects measured and mapped
- Add sweep in 1-inch increments (16 times)
- Bend in center of 16-ft logs (uniform)
- Bend 4-ft from end (non-uniform)

- 33 sets of 52 logs = 1716 observations

Results

Effect of sweep on conversion

Total Lumber Value (\$ per Log)

Proportion of Select Structural

Average Lumber Value (\$ per MBF)

Log value \& volume due to rotation: Straight vs Swept

Log 6211091 SED = 20 in .

Results

- Recovery of straight logs = 59 \%
- (Volume of boards = 59\% of log volume)
- Recovery declined 2.4\% for each 1-inch of sweep per 16-foot log
- Declined 10\% for each 4-inch of sweep
- Trend was linear
- Intercept increases with diameter
- Variation was large and constant - (CV = 25\%)

Results: Ratio of Sweep to small-end Diameter: s/d

- Recovery declined nonlinearly with s/d
- Nearly linear when s/d < 1
- Slope is -3.2% for each $0.1 \mathrm{~s} / \mathrm{d}$ (-7\% and -5\% in two other studies)
- Rather tight relationship ($\mathrm{R}^{2}=89 \%$)
- No additional variation due to diameter

Results

- Recovery \% the same regardless of uniform or non-uniform sweep.

Recovery \%

by Sweep, Grade, \& Sweep Location

Conclusions

- Expected trend of decreasing recovery \% with increasing sweep was found
- Trend was linear
- Variation largely due to log size (diameter)
- Relation between recovery \% and s/d (sweep/diam) was exponential decay, not a constant rate.
- Value loss (\$/Vol) was also exponential decay

Conclusions

- Straight logs have higher value than swept logs
- Volume recovery is the main reason
- Differences in grade yield are a secondary reason
- More wane from curved logs is probably the cause

Conclusions

- Sawing discrete boards is a step function
- Very sensitive to small changes in initial set-up
- Large and essentially constant amount of variation always present
- Sawing simulation a useful tool for analyzing variation

Citation:

- Monserud, R.A, Parry, D., Todoroki, C.L. 2004. Recovery of Simulated Sawn Logs with Sweep. New Zealand Journal of Forestry Science 34(2): 190-205.

BUT.. log shape is not limited to sweep

