Recovery from Oval Logs

Robert Monserud Christine Todoroki

BUT.. log shape is not limited to sweep

MOST logs have non-circular crosssections

Cross-sectional ovality

Is ovality detrimental to yield?

"Loss in yield due to non-circularity" Saint-André & Leban 2000

"Any deviation in shape from circularity will normally reduce the yield" Skatter & Høibø 1998

"Eccentricity has a negative impact on value recovery" Maness & Donald 1994

"Log rotation produced significant benefits" "Estimated benefits increased slightly with increasing eccentricity" Maness & Donald 1994

"When sawn in the correct position, the yield of an oval log is better than that of a round log of the same size" Asikainen & Panhelainen 1970

Ovality by species

Douglas-fir	0.95 ± 0.04	Monserud 1979
Lodgepole pine	0.82 – 0.94	Koch et al. 1990
Norway spruce	0.72 – 1.00	Saint-André, Leban 2000
Radiata pine	0.84 – 0.99	Todoroki et al. 2006
Western hemlock	0.85 – 0.96	Kellogg, Barber 1981

Ovality of stems

Ellipticity ratio range

• (oval) 0.80 - 1.00 (circular)

Ovality decreases with increasing height *Ellipticity ratio* increases (oval → circular)

Ovality increases with increasing log size *Ellipticity ratio* decreases (oval ← circular)

Purpose: To dispel myths & decipher fact about yield from oval logs

- 5 replicates of 52 Western hemlock logs
 - *Ellipticity ratio* : 1.00, 0.95, 0.90, 0.85, 0.80
 - Constant cross-sectional area & volume

Geometric modeling with AUTOSAW

- Constant sawing parameters
- 5° rotations

Log models

Area = $\Pi r^2 = 100 \Pi$

Area = Π ab = 100 Π With b/a = 0.80, a = 10x1.118, b = 10x0.894

Sawing simulation, 0°

Sawing simulation

0 degrees lumber/log volume = 52% 45 degrees lumber/log volume = 49%

Yield under rotation, Log A

Ellipticity — 0.80 — 1.00 Lumber yield (%) Rotation (degrees)

Normalized yield, Log A

Ellipticity — 0.80 — 1.00

Normalized Yield

Optimal rotation for maximizing yield

Difference in means between oval & circular logs, 95% CI

Normalized maximum yield

Ellipticity ratio	Mean	Standard deviation	lower & upper 95% limit
1.00	1.000	.000	
0.90	1.034	.057	1.018, 1.049
0.80	1.032	.078	1.011, 1.053

Max yield by ellipticity ratio

Myth busters

- * "..any deviation in shape from circularity will normally reduce the yield" Skatter & Høibø 1998
- x "..loss in yield due to the non-circular external log's shape" Saint-André & Leban 2000
 1.5]

- "Lumber yield from oval logs exceeds that of circular logs at optimal rotation"
 Maness & Donald 1994
 Rule of thumb: saw parallel to major axis,
 - 90 or 270° in our simulations, Asikainen & Panhelainen 1970

Conclusions

 Yield from oval logs, at the optimal orientation, significantly exceeds that of circular logs (~3%)

Rule of thumb for maximizing yield:
primary saw parallel to major axis

Citation:

Todoroki, C.L, Monserud, R.A., and Parry, D.L. 2007. Lumber volume and value recovery from elliptical logs. Forest Products Journal 57(7/8): 76-82.

Thanks