# Recovery from Oval Logs 

Robert Monserud
Christine Todoroki

## BUT.. log shape is not limited to sweep

* MOST logs have non-circular crosssections


## Cross-sectional ovality



## Is ovality detrimental to yield?

"Loss in yield due to non-circularity" Saint-André \& Leban 2000
"Any deviation in shape from circularity will normally reduce the yield" Skatter \& Høibø 1998
"Eccentricity has a negative impact on value recovery" Maness \& Donald 1994
"Log rotation produced significant benefits"
"Estimated benefits increased slightly with increasing eccentricity" Maness \& Donald 1994
"When sawn in the correct position, the yield of an oval log is better than that of a round log of the same size"

Asikainen \& Panhelainen 1970

## Ovality by species

Douglas-fir
Lodgepole pine
Norway spruce
Radiata pine
Western hemlock
$0.95 \pm 0.04$
0.82-0.94
0.72-1.00 Saint-André, Leban 2000
$0.84-0.99$
$0.85-0.96$

Monserud 1979
Koch et al. 1990

Todoroki et al. 2006
Kellogg, Barber 1981

## Ovality of stems

- Ellipticity ratio range
- (oval) 0.80-1.00 (circular)
- Ovality decreases with increasing height
- Ellipticity ratio increases (oval $\rightarrow$ circular)
- Ovality increases with increasing log size
- Ellipticity ratio decreases (oval $\leftarrow$ circular)


## Purpose: To dispel myths \& decipher fact

 about yield from oval logs- 5 replicates of 52 Western hemlock logs
- Ellipticity ratio : $1.00,0.95,0.90,0.85,0.80$
- Constant cross-sectional area \& volume
$\square$ Geometric modeling with AUTOSAW
- Constant sawing parameters
- $5^{\circ}$ rotations


## Log models



Area $=\Pi r^{2}=100 \Pi$


Area $=\Pi$ ab $=100 \Pi$
With $\mathrm{b} / \mathrm{a}=0.80, \mathrm{a}=10 \mathrm{x} 1.118, \mathrm{~b}=10 \times 0.894$

## Sawing simulation, $0^{\circ}$



## Sawing simulation



0 degrees
lumber/log volume $=52 \%$


45 degrees lumber/log volume $=49 \%$

## Yield under rotation, Log A



## Normalized yield, Log A



## Normalized Yield



## Optimal rotation for maximizing yield



## Difference in means between oval \& circular logs, 95\% CI

Normalized maximum yield

| Ellipticity <br> ratio | Mean | Standard <br> deviation | lower \& upper 95\% limit |
| :---: | :---: | :---: | :---: |
| 1.00 | 1.000 | .000 |  |
| 0.90 | 1.034 | .057 | $1.018,1.049$ |
| 0.80 | 1.032 | .078 | $1.011,1.053$ |

## Max yield by ellipticity ratio



## Myth busters

x "..any deviation in shape from circularity will normally reduce the yield" Skatter \& Høibø 1998
x "..loss in yield due to the non-circular external log's shape" SaintAndré \& Leban 2000

$\checkmark$ "Lumber yield from oval logs exceeds that of circular logs at optimal rotation" Maness \& Donald 1994
$\checkmark$ Rule of thumb: saw parallel to major axis, 90 or $270^{\circ}$ in our simulations, Asikainen \& Panhelainen 1970

## Conclusions

- Yield from oval logs, at the optimal orientation, significantly exceeds that of circular logs ( $\sim 3 \%$ )
- Rule of thumb for maximizing yield:
- primary saw parallel to major axis


## Citation:

- Todoroki, C.L, Monserud, R.A., and Parry, D.L. 2007. Lumber volume and value recovery from elliptical logs. Forest Products Journal 57(7/8): 76-82.
-Thanks

