

A Model for Determining Douglas-fir Bark Volume

Potential application for scanner scaling

Peter Dyson April 5, 2018 Timber Measurement Society Meeting

Outline

- Review of scanner scaling in B.C.
- Bark volume model
- Results

Scanner scaling technology

- Scanner heads emit a low power laser line on the log's surface
- Cameras in the scanning heads produce a three dimensional image of the log
- Scanner system produces accurate measurements of log diameter, length and volume

Images courtesy of Springer- Microtec

FPInnovatior

B.C. scanner scaling update

- Measurement Canada certifies Springer-Microtec's Logeye 100 scanner in 2015
- The scanner is installed at Interfor's Acorn sawmill and the B.C. provincial government authorizes a scanner pilot project in 2016
- Pilot is successful and log scanning is now fully implemented

Why develop a model for determining bark volume?

- Acorn sawmill scanner scans logs after they've been debarked
- There is interest in scanning logs over bark, because of the high cost of installing a de-barker and disposing of the bark at a sortyard
- Log volume could be determined from over bark measurements by : (over bark volume) – (bark volume) = under bark volume

Project objective

Develop a model for predicting Douglas-fir bark volume

Study logs

- Logs came from 36 cut blocks on Vancouver Island
- Logs were scaled at one of five sort yards
- A log scaler measured bark thickness with a micrometer on 943 second growth Douglas-fir logs

Data collected for each log

Timbermark	Cutblock	Length (M)	Top Size (rad ^{) a}	Butt Size (rad)	Grade	Butt or 2nd Cut	Top bark thickness (mm)	Butt Bark Thickness (mm)	BGZ	Volume m3
BGZ124	123H	12.5	17	20	J	В	9	16	CWHx m2	1.35
		41ft.	13 in.	16 in			0.35 in	0.62 in		

- BGZ (Biogeoclimatic zone) is an ecological classification system
- BGZ was included because of its likely influence on bark thickness
- Smallians formula was used to calculate log volume

^a rad is 2 cm class (1 inch= 2.54 cm)

Developing the bark volume model

- Regression analysis found a relationship between:
 - Butt diameter (DIB) to predict bark volume
 - Not a really strong relationship
- Developed a model
- Model calculates a bark volume based on the average ratio of top bark thickness/top diameter and butt bark thickness/ butt diameter (bark ratio)
- A different bark ratio is calculated for the six BGZ zone /subzones

Bark thickness ratios

- Ratio calculated for each log
- Top diameter bark thickness ratio = Top bark thickness / Top diameter (DIB)
- Butt diameter bark thickness ratio = Butt bark thickness / Butt diameter (DIB)
- Average ratio =(Top bark ratio+Butt bark ratio)/2

Log top end bark ratio

Log butt end bark ratio

Accuracy of the CWHxm2 model

- Root men square error (RMS) ¹ = 0.046 m³
- On average model will predict volume within 0.046 m³

¹ RMS is the is the difference between the model values and the actual

© 2018 FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations

Accuracy of all models

BGZ Model	Logs (no.)	RMSE
CDFmm	45	0.066
CWHmm1	15	0.050
CWHmm2	73	0.046
CWHvm1	75	0.070
CWHxm1	105	0.053
CCWHxm2	629	0.046

Potential application using bark volume model in scanner scaling

- Scanner will measure log diameter outside bark (DOB) and length
- The bark thickness model will calculate an inside bark volume
- However, there is a problem if bark is missing at point where scanner measures diameter, as diameter will not be DOB. The scaler will have to "adjust" the scanner measured diameter
- Scaler "adjustment" to account for missing bark, is a method used in Sweden

Future work

- Develop a model to predict bark thickness so diameter inside bark(DIB) can be determined
- Test the models on other logs
- Develop models for other species (i.e. hemlock, pine)

Thank you

Peter Dyson

Follow us on

www.fpinnovations.ca

© 2018 FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations.