#### TIMBER MEASUREMENTS SOCIETY CENTRAL MEETING 2016

# Options of 3D-scanning measurements for logs: differences and relevance

Udo Hans Sauter Jörg Staudenmaier

Department of Forest Utilisation

Forest Research Institute of Baden-Wuerttemberg



# FVA

# Forest Research Institute of Baden-Wuerttemberg (FVA)

- Located in Freiburg (Black Forest)
- Research institute of the forest administration
- Regional, national and international research and consulting tasks and projects





# FVA

# **FVA - Department of Forest Utilisation**

# Harvesting, logistics





Roundwood measurement, grading

Applied wood science





Bioenergy from forests short rotation agroforestry



# **Electronic measurement: technology**





# Electronic measurement: technology

- 2D Measurement Systems
  - infrared or / and ultrasound
  - normally 2 perpendicular diameters
  - fixed measuring directions (geometry of the system)



### **Electronic measurement: technology**

- 3D Measurement Systems (Laser-Triangulation)
  - Normally 4 laser sources / sensor devices
  - Full contour scan



6

# **Electronic measurement: raw material**

- Only softwood:
  - Spruce
  - Pine
  - Fir
  - Douglas fir
  - Larch
- Short logs (< 6 m)
- Long logs (6 20 m)





#### **Electronic measurement: data processing**



# **3D-point cloud**

- 360 points per cross-section
- +/- 20 cross-sections per meter log length



# **Electronic measurement: data processing**

# **Preprocessing of data**

Smoothing the measured data of all cross sections:

Detection of errors and outliers

- → looking at the radii of two adjacent points
- → if the difference between the two radii is bigger than X% of the mean radius
- $\rightarrow$  computing of new values
- → iterative method (repeated computation until all points are inside the limits)



9

#### **Electronic measurement: data processing**





# **Calculating cross-section areas**

- polygon based on 360 contour points
- calculating the real area (Gauss quadrature, based on triangels)

$$A = \frac{1}{2} \sum_{i=1}^{360} (y_i + y_{i+1}) \times (x_i - x_{i+1})$$





#### **Calculating cross-section areas**



**Diameter: different approaches** 



#### Definition of the centre point

Premise: All diameters intersect in one common point

 $\rightarrow$  different approaches to define this intersection / centre point



# Definition of the centre point

Premise: All diameters intersect in one common point

 $\rightarrow$  different approaches to define this intersection / centre point

| arithmetic centre point                    | centre of area                                                                            |
|--------------------------------------------|-------------------------------------------------------------------------------------------|
| Mean value of all measurend points (m):    | Calculating the centre of area(c):                                                        |
| $m_x = \frac{1}{360} \sum_{i=1}^{360} x_i$ | $c_x = \frac{1}{6A} \sum_{i=0}^{N-1} (x_i + x_{i+1}) * (x_i y_{i+1} - x_{i+1} y_i)$       |
| $m_y = \frac{1}{360} \sum_{i=1}^{360} y_i$ | $c_{y} = \frac{1}{6A} \sum_{i=0}^{N-1} (y_{i} + y_{i+1}) * (x_{i}y_{i+1} - x_{i+1}y_{i})$ |





**Euclidean distance between** 

16

Euclidean distance between arithmetic centre point and centre of area

17

Baden-Württemberg

(n=3867)



#### **Calculating diameters and circular areas**







#### **Calculating diameters and circular areas**







#### **Calculating diameters and circular areas**

|                                            | <ul> <li>18 diameters,</li> <li>angular distance ca. 10°</li> </ul>                                       |   |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------|---|
| 18                                         | <ul> <li>calculating the mean value of 18<br/>diameters</li> <li>calculating the circular area</li> </ul> | • |
| <b>diameters</b><br>(caliper /<br>contour) | $d = \frac{1}{n} \sum_{i=1}^{18} d_i$                                                                     | < |
|                                            | $A = \frac{\pi}{4}d^2$                                                                                    |   |





### **Calculating diameters and circular areas**

| 2<br>perpen-<br>dicular<br>diameters<br>(caliper /<br>contour) | <ul> <li>two perpendicular diameters in fixed measuring planes (0° and 90°),</li> <li>calculating the mean value of two diameters,</li> <li>calculating the circular area</li> <li>d = d<sub>0</sub> + d<sub>90</sub>/2</li> <li>A = π/4 d<sup>2</sup></li> </ul> | -2000<br>CO<br>X =<br>V = |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|





### **Calculating diameters and circular areas**



### **Calculating diameters and circular areas**













# Summary

- 3D-scanning technology generates comprehensive data
- log volumes can be calculated on the basis of a cylinder model?
- log (cylinder) length is easy to determine
- there are various approaches for calculating: diameters, circular and irregular cross-section areas
- precise, reliable and transparent determination of the cross-section area can be realized by using many diameters and the principle of a caliper



#### Thank you!

Dr. Udo Hans Sauter udo.sauter@forst.bwl.de

Dr. Jörg Staudenmaier joerg.staudenmaier@forst.bwl.de

Department of Forest Utilisation Forest Research Institute of Baden-Wuerttemberg Wonnhaldestrasse 4 D-79100 Freiburg

#### www.fva-bw.de



