TIMBER MEASUREMENTS SOCIETY

CENTRAL MEETING 2016

Options of 3D-scanning measurements for logs: differences and relevance

Udo Hans Sauter
Jörg Staudenmaier
Department of Forest Utilisation
Forest Research Institute of
Baden-Wuerttemberg

Forest Research Institute of Baden-Wuerttemberg (FVA)

- Located in Freiburg (Black Forest)
- Research institute of the forest administration
- Regional, national and international research and consulting tasks and projects

FVA - Department of Forest Utilisation

Roundwood measurement, grading

Bioenergy from forests short rotation agroforestry

Electronic measurement: technology

Electronic measurement: technology

- 2D Measurement Systems
- infrared or / and ultrasound
- normally 2 perpendicular diameters
- fixed measuring directions (geometry of the system)

- 3D Measurement Systems (Laser-Triangulation)
- Normally 4 laser sources / sensor devices
- Full contour scan

Electronic measurement: raw material

- Only softwood:
- Spruce
- Pine
- Fir
- Douglas fir
- Larch
- Short logs (< 6 m)
- Long logs (6-20 m)

Preprocessing of data

- Smoothing the measured data of all cross sections:

Detection of errors and outliers
\rightarrow looking at the radii of two adjacent points
\rightarrow if the difference between the two radii is bigger than $\mathrm{X} \%$ of the mean radius
\rightarrow computing of new values
\rightarrow iterative method (repeated computation until all points are inside the limits)

Electronic measurement: data processing

Electronic measurement

Calculating cross-section areas

- polygon based on 360 contour points
- calculating the real area
(Gauss quadrature, based on triangels)

$$
A=\frac{1}{2} \sum_{i=1}^{360}\left(y_{i}+y_{i+1}\right) \times\left(x_{i}-x_{i+1}\right)
$$

Electronic measurement

Calculating cross-section areas

Diameter: different approaches

Definition of the centre point?

determining the real contour

Simulating a mechanical caliper

Electronic measurement: contour diameters

Definition of the centre point

Premise: All diameters intersect in one common point
\rightarrow different approaches to define this intersection / centre point

arithmetic centre point	
Mean value of all measurend points $(m):$	
$m_{x}=\frac{1}{360} \sum_{i=1}^{360} x_{i}$	
$m_{y}=\frac{1}{360} \sum_{i=1}^{360} y_{i}$	

Electronic measurement: contour diameters

Definition of the centre point

Premise: All diameters intersect in one common point
\rightarrow different approaches to define this intersection / centre point

arithmetic centre point	centre of area
Mean value of all measurend points (m) :	Calculating the centre of area(c):
$m_{x}=\frac{1}{360} \sum_{i=1}^{360} x_{i}$	$c_{x}=\frac{1}{6 A} \sum_{i=0}^{N-1}\left(x_{i}+x_{i+1}\right) *\left(x_{i} y_{i+1}-x_{i+1} y_{i}\right)$
$m_{y}=\frac{1}{360} \sum_{i=1}^{360} y_{i}$	$c_{y}=\frac{1}{6 A} \sum_{i=0}^{N-1}\left(y_{i}+y_{i+1}\right) *\left(x_{i} y_{i+1}-x_{i+1} y_{i}\right)$

Electronic measurement: contour diameters

Euclidean distance between

 arithmetic centre point and centre of area$$
(n=3867)
$$

Electronic measurement: contour diameters

Euclidean distance between

 arithmetic centre point and centre of area$$
(n=3867)
$$

Calculating diameters and circular areas

180	- 180 diameters, - angular distance ca. 1° - calculating the mean value of 180 diameters - calculating the circular area
diameters (caliper / contour)	$d=\frac{1}{n} \sum_{i=1}^{180} d_{i}$
	$A=\frac{\pi}{4} d^{2}$

coordinates of the arithmetic centre point:
$x=9,8$
$y=-30,8$

Electronic measurement

Calculating diameters and circular areas

90 diameters (caliper / contour)	- 90 diameters, - angular distance ca. 2° - calculating the mean value of 90 diameters - calculating the circular area $\begin{aligned} & d=\frac{1}{n} \sum_{i=1}^{90} d_{i} \\ & A=\frac{\pi}{4} d^{2} \end{aligned}$

coordinates of the arithmetic centre point:
$x=9,8$
$y=-30,8$

Calculating diameters and circular areas

18 diameters (caliper / contour)	- 18 diameters, - angular distance ca. 10° - calculating the mean value of 18 diameters - calculating the circular area $\begin{aligned} & d=\frac{1}{n} \sum_{i=1}^{18} d_{i} \\ & A=\frac{\pi}{4} d^{2} \end{aligned}$

Electronic measurement

Calculating diameters and circular areas

	• two perpendicular diameters in fixed measuring planes $\left(0^{\circ}\right.$ and $\left.90^{\circ}\right)$, calculating the mean value of two diameters,
perpen- dicular calculating the circular area diameters (caliper contour)	$d=\frac{d_{0}+d_{90}}{2}$
	$A=\frac{\pi}{4} d^{2}$

Calculating diameters and circular areas

minimum diameter plus 90° (caliper / contour)	- minimum diameter (out of 180 diameters), - plus perpendicular diameter - calculating the circular area $\begin{aligned} & d=\frac{d_{\min }+d_{\min 90}}{2} \\ & A=\frac{\pi}{4} d^{2} \end{aligned}$

coordinates of the grithnetic centre point:
$x=9,8$
$y=-30,8$

Calculating diameters and circular areas

minimum	minimum diameter (out of 180 diameters), diameter (calculating the circular area
(caliper $/$ contour)	$A=d_{\text {min }}$

Summary

- 3D-scanning technology generates comprehensive data
- log volumes can be calculated on the basis of a cylinder model?
- log (cylinder) length is easy to determine
- there are various approaches for calculating: diameters, circular and irregular cross-section areas
- precise, reliable and transparent determination of the cross-section area can be realized by using many diameters and the principle of a caliper

Thank you!

Dr. Udo Hans Sauter udo.sauter@forst.bwl.de

Dr. Jörg Staudenmaier joerg.staudenmaier@forst.bwl.de

Department of Forest Utilisation Forest Research Institute of Baden-Wuerttemberg
Wonnhaldestrasse 4
D-79100 Freiburg

www.fva-bw.de

