Unmanned Aircraft Systems for Mapping: Aerial Information System Lab Oregon State University

Michael Wing Associate Professor OSU AIS Laboratory Director

Overview

- Regulatory climate of UAS
- OSU Aerial Information System (AIS)
 Laboratory capabilities and platforms
- UAS project examples

UAS Regulatory Environment

- FAA Modernization Act
 - Signed into law in 2013
 - "Integrate UAS into the NAS system" or else
- National Test Site Competition
 - 25 proposals from 24 states
 - Oregon teams with Alaska and scores!
 - Pan-Pacific UAS Test Range Complex
 - · Oregon: Pendleton, Tillamook, and Warm Springs
- FAA UAS Center of Excellence Competition
- UAS flights require FAA agreement
 - Certificate of Authorization

Certificate of Authorization

- Only public entities can file
 - OSU was the first in Oregon
- An exhaustive description of
 - Platform
 - Communications
 - Safety procedures
 - Flight ops
- Tied to a single platform and specific area
- Good for one year with the possibility of a second year

OSU AIS Laboratory

- OSU has:
 - 29 active COAs
 - 5 pending COAs
 - Oregon, Washington, Arizona, Montana, Oklahoma
 - Flown UAS in Turkey, Indonesia, and Mexico
- Dedicated to UAS flights for remote sensing
 - Forestry
 - Agriculture
 - Fish and Wildlife
 - Search and Rescue
- http://ais.forestry.oregonstate.edu/

AIS Laboratory Flights - 2014

- Salmon Surveys South Umpqua River, OR
- Burn Severity Mapping Corvallis, OR
- Biomass Grinding Estimation Eugene, OR
- Digital Modeling of Forest Canopy Structure Trimble UH – *International (Indonesia)*
- Biomass Volume Measurements Frasier, CO
- Swiss Needle Cast Detection Blodgett, OR
- Wildfire Burn Severity Warm Springs, OR
- Vineyard Vigor Mapping Amity, OR
- Golden Eagle Carcass Detection Warm Springs, OR
- Forest Regeneration Survey Oregon
- Fiber Optic Cable Measurements Oregon

AIS Laboratory Sensors

- Advanced Navigations Spatial Dual Inertial Measurement Unit (IMU)
- Canon \$100/\$110
- Canon S100/S110 IR Converted
- Canon G15 NIR Converted
- GoPro Hero 3+
- Sony Nex 5T
- Sony Nex 5T NIR Converted
- Velodyne HDL-32E LIDAR

AIS Laboratory Platforms

- Albatross (1)
- Beaver (4)
- Bixler (2)
- Gwaihir (1)
- Matrix (2)
- Phantom (1)
- Volitare (2)

OSU AIS LiDAR Platform: Gwaihir

OSU AIS Platform: Beaver Series

OSU AIS Platform: Matrix

Prioria Maveric- Getting Started

- McDonald Forest
 - October 2012 flight– First approved COA in Oregon
- Compact airplane with flexible wings
- Electrical power
- Get at look at the forest
- Journal article
 - Wing, M.G., J. Burnett, J. Sessions, J. Brungardt, V. Cordell, D. Dobler, and D. Wilson. 2013. Eyes in the sky: Remote sensing technology development using small unmanned aircraft systems. Journal of Forestry 111(5):341-347.

Pulse Vapor

- Small frame helicopter
- Electrically powered
- ▶ EO and IR video
- Forest Search and Rescue Demo
 - July 24, 2013
 - McDonald Forest
 - About a dozen different objects
 - Three students!
 - Two forest sites
- Publication in review

Beaver Series: Ritewing Zephyr II

- In house product developed by AIS Lab
 - Generous help from Seth Johnson of VDOS
- Flown in Turkey in May 2013
 - Works flawlessly
- ▶ EO imagery with Canon S100
- Journal article:
 - Wing, M.G., J. Burnett, S. Johnson, A. Akay, and J. Sessions. In press. A low-cost unmanned aerial system for remote sensing of forested landscapes. International Journal of Remote Sensing.

Zephyr II Components

Component	Cost
2.4 GHz Tx/Rx	\$360
4500 mAh 11.1 V LiPo	\$30
Airspeed Sensor	\$25
ArduPilot APM 2.5	\$160
Canon S100	\$300
RiteWing Zephyr II	\$325
▶ TTC Radio	\$86
uBlox GPS Module	\$76
Voltage Regulator	\$15
Total	\$1,377

Biomass measurements

- Biomass products are ground up
- Loaded into trucks for incineration
- Dry chips often result in a truck not being able to reach desirable capacities
- Solution: build a "hurler" that can propel biomass grindings into a truck at speeds up to 90 mph

The answer is three (3)

Mangrove Damage- Mexico

- Hurricane Wilma 2005
- Significant resource damage
- Flight

Thank you for your attention