Tree Kinks, Crooks & Forks

A Timber Cruiser's Perspective: Making Trees into Logs

Paul Wagner -

University of Washington: BA, Forest Management, 1980; MBA, 1988.

Vice President/Project Manager, employed by Atterbury Consultants Inc. since May 1989.

Past employment with Washington Department of Natural Resources, Davey Tree Surgery and the USDA Forest Service.

25 years experience cruising timber

Atterbury Consultants, Inc. 3800 SW Cedar Hills Blvd., #145 Beaverton, OR 97005 206-499-0080

What Does a Timber Cruiser Do In The Woods?

• The short answer is measure trees as logs.

What Does a Timber Cruiser Do In The Woods?

- The short answer is measure trees as logs.
- Because I want to emulate cutout, where scalers measure logs and then look up Scribner board foot volume according to scaling rules.

I measure tree dimensions and input them to my trusty data recorder running SuperACE

(a fine product of Atterbury Consultants.)

- A variable log length, variable top diameter for bole height cruise program is required for accurate cruising.
- I measure DBH, Form Factor (taper) and tree height to a top fraction diameter, all outside bark measurements.
- SuperACE can calculate scaling diameters then anywhere along the tree bole.

Sometimes trees just don't make nice 40 foot logs.

Trees don't have an "average" total height

And dang it; they're not straight

 Are there kinks or crooks in the tree that will be required bucking according to my cutting specs?

- Are there kinks or crooks in the tree that will be required bucking according to my cutting specs?
- Are some of these defects weak points that will break when the tree falls?

- Are there kinks or crooks in the tree that will be required bucking according to my cutting specs?
- Are some of these defects weak points that will break when the tree falls?
- Is there some associated rot to deduct from a log or will a larger cull piece be cut out?

- Are there kinks or crooks in the tree that will be required bucking according to my cutting specs?
- Are some of these defects weak points that will break when the tree falls?
- Is there some associated rot to deduct from a log or will a larger cull piece be cut out?
- How much will my cruise client accept and what combination of log lengths will work best?

- Are there kinks or crooks in the tree that will be required bucking according to my cutting specs?
- Are some of these defects weak points that will break when the tree falls?
- Is there some associated rot to deduct from a log or will a larger cull piece be cut out?
- How much will my cruise client accept and what combination of log lengths will work best?
- What are my clients or local market preferred log lengths?

This kink split back 8 ft. when it fell

What do typical log loads look like?

Log lengths have different values

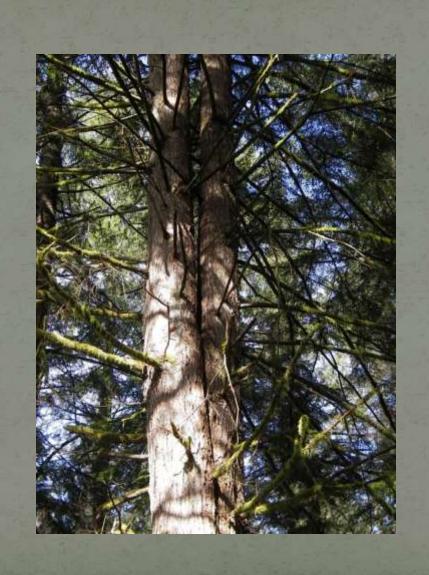
							1000		The Secretary
DOUGLAS FIR LO	OG PRIC	E MATR	IX DAI	RRINGTO	ON				
March 2015 Log Prices									
Length		40'	36' - 38'	32' - 34'	28' - 30'	24' - 26'	<u>22'</u>	16' - 20'	12' - 14'
Grade		<u></u>		<u> </u>			<u>==</u>	<u></u>	<u></u>
<u>orado</u>									
# 2 Sawmill & Btr. (31" Butt Diameter & Smaller – Long A	vie Inei	\$ 600	\$ 576	\$ 564	\$ 510	\$ 420	\$ 420	\$ 480	\$ 357
# 2 Gawiiiii & But. (31 Butt Diameter & Ginalier - Long A	MIS IIISI	Ψ 000	ψ 370	ψ JU T	ψ 310	Ψ 720	Ψ 720	Ψ +00	Ψ 331
#2 Coursil (40" 44" Cooling Diameter)		¢ 600	¢ 570	¢ ECA	¢ 540	¢ 400	¢ 420	¢ 400	¢ 257
# 3 Sawmill (10" - 11" Scaling Diameter)		\$ 600	\$ 576	\$ 564	\$ 510	\$ 420	\$ 420	\$ 480	\$ 357
WAR WILLIAM OF BUILDING		• • • •	A ==-	A - - - - -	A =	A 400	•	A 400	.
# 3 Sawmill (8" - 9" Scaling Diameter)		\$ 600	\$ 576	\$ 564	\$ 510	\$ 420	\$ 420	\$ 480	\$ 357
# 3 Sawmill (6"-7" Scaling Diameter) & #4 Sawmill (5" +)		\$ 600	\$ 576	\$ 564	\$ 510	\$ 420	\$ 420	\$ 480	\$ 357
# 2 Sawmill & Btr. (32" Butt Diameter & Larger)		\$ 375	\$ 360	\$ 353	\$ 319	\$ 263	\$ 263	\$ 300	\$ -
# 3 Sawmill (12" + Scaling Diameter)		\$ 375	\$ 360	\$ 353	\$ 319	\$ 263	\$ 263	\$ 300	\$ -
-									
Utility & Short Log		\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
, u		•		·			•	·	

Cruise program for handheld allows checking scale diameters

Cruise tree data: preferred lengths, variable bole top, cull segments, breakage.

0013 0001 40 1 DF	23.5 16 89 4 119	3240 7340	7332	
0013 0002 40 1 DF	19.0 16 81 4 107	3240 3340	4316	
0013 0003 40 1 DF	20.0 16 82 4 106	3240 3340	4320	
0013 0004 40 1 DF	20.0 16 85 4 115	3240 3340	4332	
0013 0005 40 1 WH	8.5 16 87 4 34	43262		
0014 0001 40 1 DF	16.4 16 89 4 97	3232 3332	4326	
0014 0002 B2 1 RC	16.6 16 82 4 78	3340 3336		
0014 0003 B2 1 RC	10.0 16 86 4 58	3338		
0014 0004 40 1 DF	16.5 16 89 4 97	3232 3332	4326	
0014 0005 B2 1 RC	13.0 16 83 4 63	3336 3316		
0015 0001 40 1 DF	31.0 16 88 7 75	523201 3238		
0015 0002 40 1 DF	26.0 16 87 4 118	0006 3240	3236	3332 0006
		00		
0015 0003 40 1 DF	28.0 16 88 4 131	3240 3226	0004	3240 3316
0015 0004 40 1 DF	26.0 16 89 4 133	3240 3240	3332	0006 4316
0015 0005 40 1 DF	29.0 16 87 4 119	5232 0004	32404	3340

Scribner & cubic volume of cruise trees


TC PLOTTREELIST Plot Tree List - Volumes Page 1														
	P							OP PO	Date		15			
TWP	RGE	SC	TRACT		TYPE ACRES PLOTS				TE	EES	CRUIS			
28N	08E	17	COOP		0001			26.40	23	123		3/1/2015		
Plot	Tree			Trees		16'	Tot	BA	Trees	Logs Net		Net To		
No.	No.	Age	SI Spp St	Me. C	t. DBH	FF	Ht.	/Ac.	/Ac.	/Ac.	CuFt/Ac.	BdFt/Ac.	CUNITS	MBF
0001	0001	85	DF P	1	19.0	89	145	50.5	25.65	51.3	2,559 13,337		29	15
	0002	85	DF	1	32.5	89	175	50.5	8.77	26.3	2,918	16,918	33	19
	0003	85	DF	1	15.5	86	122	54.1	41.27	82.5	2,134	9,080	24	10
	0004	85	DF	1	24.0	89	171	50.5	50.5 16.07 6		2,823	15,271	32	18
	0005	85	DF	1	24.6	90	168	49.4	14.96	59.8	2,813	15,560	32	18
	0006	85	DF	1	26.0	89	167	50.5	13.70	41.1	2,834	15,203	33	17
	0007	85	DF	1	28.0	86	181	54.1	12.65	50.6	3,215	17,328	37	20
	8000	85	DF	1	26.0	85	167	55.4	15.02	45.0	3,016	15,466	35	18
0001				8	22.7	88	153	414.9	148.08	421.0	22,312	118,162	256	136
0002	0001	85	RC	1	13.0	85	100	38.4	41.71	83.4	1,125	3,754	13	4
	0002	85	WH	1	12.0	90	109	49.4	62.88	125.8	2,037	10,689	23	12
	0003	85	RC	1	14.0	83	133	40.3	37.72	75.4	1,621	6,790	19	8
	0004	85	WH	1	21.0	89	135	50.5	20.99	63.0	2,521	15,116	29	17
	0005	85	RC	1	11.5	86	100	37.6	52.07	52.1	846	3,645	10	4
	0006	85	RC	1	11.5	85	72	38.4	53.31	53.3	791	3,198	9	4
	0007	85	WH	1	20.5	89	129	50.5	22.03	66.1 2,636		14,100	30	16
0002				7	13.9	87	106	305.2	290.72	519.1	11,578	57,293	133	66
0003	0001	85	DF	1	19.7	86	146	54.1	25.55	76.7	2,525	10,987	29	13
	0002	85	WH	1	17.0	87	118	52.8	33.53	100.6	2,242	12,740	26	15
	0003	85	RC	1	12.7	80	101	43.4	49.34	49.3	915	2,961	11	3
	0004	85	WH	1	10.5	89	62	50.5	83.98	84.0	1,127	5,039	13	6
	0005	85	DF	1	20.0	90	119	49.4	22.64	45.3	1,841	9,507	21	11
0003				5	14.6	86	96	250.2	215.04	355.8	8,650	41,233	99	47

Cruise summary report

T	Project: COOP_PO												Page 1 Date 4/8/201 Time 6:09:1		_				
T28N R08E S17 T0001 Twp Rge Sec Tract 28N 08E 17 COOP				Type 0001		10	Plot		1	Sample Trees 123			Cu F t S		R08E S		001		
Spp	S So T rt	Gr ad	% Net BdFt	Bd. Def%	Ft. per Acre Total Gross Net Net MBF			_	Percent Net Board Foot Volume Log Scale Dia. Log Length 5-7 8-11 12-15 16+ 12-15 16-30 31-35 36-99					Avera Ln Dia Ft In	ge Log Bd Ft	CF/ Lf	Logs Per /Acre		
DF DF DF	CL DO DO CS	CL 2S 3S 3S	5 43 22 6	3.2 .7 .4	2,166 17,126 8,775 2,297	2,097 17,001 8,738 2,297	55 449 231 61	100	100	52	100 48	0	3 5 31	100 10 26 16	87 69 52	32 19 37 15 35 9 28 6	326 112	2.88 1.72 0.72 0.33	4.2 52.2 78.1 62.9
DF DF DF	OS RO PU PO	2S 3S PU PO	4 3	6.7	1,843 1,077 165 6,541	1,719 1,077 165 6,541	45 28 4 173	37	13 81	63 63 19	100 25	63	10 8 2	90 5	87 37 98	30 23 33 12 22 10 78 10	215 60	3.84 1.33 0.75 1.33	2.7 5.0 2.8 12.3
DF	Totals		68	.9	39,989	39,634	1,046	6	36	27	31	0	5	20	74	36 10	180	1.04	220.3
WH WH WH	DO DO CS PU	2S 3S 3S PU	35 47 16 2	.4 .4 4.1	5,440 7,446 2,558 179	5,416 7,415 2,454 179	143 196 65 5	84 100	87 16	84 13	16		4 1 20 100	26 23 6	70 76 74	36 13 37 10 34 6 27 6	145 55	1.34 0.74 0.37 0.41	18.8 51.0 44.3 3.8
WH	Total	5	26	1.0	15,624	15,465	408	14	44	36	5		6	21	73	35 9	131	0.69	117.8
RC RC	DO Totals	3\$	100	2.3	3,371	3,293	87 87	45 45	31	16	8		4	14	82	36 7 36 7	75 75	0.58	43.8
1	Totals			1.0	58,985	58,392	1,542	10	38	29	23	0	5	20	74	36 9	153	0.58	381.9

What the heck do I do with a forked tree?

How to Deal With Forked Trees

The simplest way to deal with merchantable forked tops is to treat each top as a separate tree. They are taken in or out just as you would a normal tree and cruised on their merits.

Treating forks in this manner gives an accurate logs per acre volume. Using an RD1000, with it's more precise inclination scale, rather than a Relaskop, may make this easier.

If one fork is merchantable and not too different in diameter from the stem below, accurate volume can be determined by using inch deductions on the log(s) above the deformity.

If precise trees per acre are needed for some reason, trees that are forks can be designated using the *STATUS* column in SuperACE.

Timber Cruising with SuperACE by ACI

Summary: What a Cruiser Needs

1. A cruise program that can handle variable log lengths and different top diameters.

Summary: What a Cruiser Needs

- 1. A cruise program that can handle variable log lengths and different top diameters.
- 2. Have cruising guidelines that reflect preferred or market log lengths.

Summary: What a Cruiser Needs

- A cruise program that can handle variable log lengths and different top diameters.
- 2. Have cruising guidelines that reflect preferred or market log lengths.
- Just equipment that allows quick and accurate measurements and checking: laser, handheld computer.