TIMBER MEASUREMENTS SOCIETY CENTRAL MEETING

Comparison of log scaling under different national standards in Europe

Udo Hans Sauter Jörg Staudenmaier

Department of Forest Utilisation

Forest Research Institute of Baden-Wuerttemberg

FVA

Forest Research Institute of Baden-Wuerttemberg (FVA)

- Located in Freiburg (Black Forest)
- Research institute of the forest administration
- Regional, national and international research and consulting tasks and projects

FVA

FVA - Department of Forest Utilisation

Harvesting, logistics

Roundwood measurement, grading

Applied wood science

Bioenergy from forests short rotation agroforestry

Manual measurement in the forest (1)

Single log measuremet:

- Long tradition
- Carried out by forest workers
- Using mechanical calliper and tape
- Measuring unit: m³
 (in Germany since 1875)

Manual measurement in the forest (2)

Single log measuremet:

- Mid diameter:
 - two perpendicular measurements (minimum and maximum)
 - taken in the middle of the log length
 - Truncation to full centimeters
- Log length:
 - Truncation to agreed steps
 (e.g. 10 cm, 50 cm)

Calculating the volume

Basis: cylinder volume

Huber's formula:
$$V = \frac{\pi}{4} * d^2 * l$$

→ Standard for all types of wood

Considering legal requirements

- 1969: EU directive (68/89) for the intra-European approximation of laws in terms of roundwood scaling and grading was transfered into a national law (Forst-HKL, Forst-HKS).
- For more than 40 years this law formed the main basis for scaling and grading of roundwood in Germany.
- 31.12.2008: Suspension of the EU directive (68/89)
- → Since 01.01.2015: "Rahmenvereinbarung für den Rohholzhandel in Deutschland" (RVR) as a frameworg agreement on a private basis
 - → www.rvr-deutschland.de

Raw material

- Only softwood:
 - Spruce
 - Pine
 - Fir
 - Douglas fir
 - Larch
- Short logs (< 6 m)
- Long logs (6 20 m)

Technology

- 2D Measurement Systems
 - infrared or / and ultrasound

- normally 2 perpendicular diameters
- fixed measuring directions (geometry of the system)

Technology

- 3D Measurement Systems (Laser-Triangulation)
 - Normally 4 laser sources / sensor devices

- Full contour scan

Log length

Diameter: Different approaches

Determining the real contour

Simulating a mechanical calliper

Diameter: Different approaches

Volume differences: simulated calliper – real contour

(2 perpendicular mid diameters, no roundings, fixed measurement planes, n = 139.662, mean = 3,5%)

	Austria	Germany
Standard	National standard (ÖNorm L1021)	Framework agreement (Rahmenvereinbarung Werksvermessung)

	Austria	Germany
Standard	National standard (ÖNorm L1021)	Framework agreement (Rahmenvereinbarung Werksvermessung)
Mid diameter position	Middle of the <u>effective</u> log length	Middle of the <u>accounted</u> log length

	Austria	Germany
Standard	National standard (ÖNorm L1021)	Framework agreement (Rahmenvereinbarung Werksvermessung)
Mid diameter position	Middle of the <u>effective</u> log length	Middle of the <u>accounted</u> log length
Diameter measurement planes	2 perpendicular, <u>variable</u> planes	2 perpendicular, <u>fixed</u> planes (e.g. vertical / horizontal)

	Austria	Germany
Standard	National standard (ÖNorm L1021)	Framework agreement (Rahmenvereinbarung Werksvermessung)
Mid diameter position	Middle of the <u>effective</u> log length	Middle of the <u>accounted</u> log length
Diameter measurement planes	2 perpendicular, <u>variable</u> planes	2 perpendicular, <u>fixed</u> planes (e.g. vertical / horizontal)
Rounding of diameters	Double truncation (to whole centimeters)	Single or double truncation (to whole centimeters)

Relative volume differences

(Reference: effective volume, n=139.662)

Relative volume differences

(Reference: effective volume, n=139.662)

Relative volume differences by diameter classes

(Reference: effective volume, n=139.662)

Automated determination of log quality

- measurable quality parameters can be used for automatic grading:
 - sweep, taper (and ovality)

Non-measurable quality parameters

- parameters which can not yet be measured automatically
- can be used for grading if there is a photo-optical documentation system (e.g. konts, rot, insects)

Forstliche Versuchsund Forschungsanstalt Baden-Württemberg

Thank you!

Dr. Udo Hans Sauter udo.sauter@forst.bwl.de

Dr. Jörg Staudenmaier joerg.staudenmaier@forst.bwl.de

Department of Forest Utilisation Forest Research Institute of Baden-Wuerttemberg Wonnhaldestrasse 4 D-79100 Freiburg

www.fva-bw.de

Approaches for determining the log volume

Contour diameter

- Mid diameter: mean of 180 single measurements
- No roundings

Minimal contour diameter

- Mid diameter: 2 perpendicular contour diameters, one is the minimum diameter out of 180 contour diameters
- Rounding down to full centimeters

Sectionalised volume

- Dividing the log into sections of 50 cm
- 2 perpendicular contour diameters per section
- · Calculation the volume for each section
- No rounding
- Log volume = sum of all section volumes

