

Log Scanning Trials

Progress by Measurement Canada and scanner scaling technical committees

Peter Dyson April 8, 2015 Coeur d' Alene , Idaho

Introduction

- Overview of scanner scaling.
- Recent scanner scaling trials.
- State of scanner scaling in British Columbia.

FPInnovations

Scanner scaling using 3D log scanners

- Scanners emit a low power laser line on the log's surface.
- Cameras in the scanning heads and associated software produce a 3 dimensional image of the log.
- Scanners produce accurate measurements of log diameter. Additional hardware measures log length.

Images courtesy of Springer Microtec

Scanner scaling background

- Regulatory agencies and groups have been developing scanner scaling regulations and procedures.
- Measurement Canada (MC)
 - Log scanners (Timber Dimensional Measuring Device) must be certified by MC.
- British Columbia Ministry of Forests and Natural Resource Operations (BCMFLNRO)
 - Has been developing B.C scanner scaling procedures.
- Canadian Standards Association and B.C. Log Scanning Technical Review Committee.
 - They have helped MC and BCFLNRO develop scanner certification and scanner scaling procedures.

Trials have been conducted testing scanner accuracy on log diameter and length

Tests were conducted to:

- Develop diameter and length accuracy requirements.
- Assist Measurement Canada in developing procedures for certifying and testing scanners.
- Confirm the scanner at the expected site of a scanner scaling pilot project could accurately measure diameter and length.

Scanner test at Western Forest Products Ladysmith sawmill

- The scanner was calibrated.
- Circumferences and lengths of 10 logs were manually measured.
- Each logs was scanned 3 times. The scanner measurements were compared to the manual.

FPInnovations

Ladysmith trial results

 Researchers manually measured 73 diameters and 10 lengths.

	Maximum difference (mm) ¹	Maximum difference (inches)	
Length	24	0.94	
Diameter	8	0.31	

¹ manual- scanner

 Each log was scanned 3 times to test the repeatability of scanner length and diameter measurements

	Maximum difference (mm)	Maximum difference (inches)
Length	26	1.02
Diameter	9	0.35

Scanner test at Interfor's Acorn sawmill

- The Acorn sawmill scanner was tested in August 2014.
 - This will likely be the first site for a scanner scaling pilot project.
 - Interfor wanted to confirm the scanner could pass Measurement Canada tests.

Acorn sawmill scanner test methodology

- The lengths and diameters of 8 logs were manually measured.
- Each log was scanned twice with butt end forward and twice with the top end forward.
- Testing conducted on one log:
 - Half the log was scanned.
 - Then scanning was stopped.
 - The infeed chain direction was reversed and the log was backed up for 1 m.
 - Scanning resumed with the log moving forward again.

Scanner length measuring accuracy

Log #	Manual measure (cm)	Scanner measure (cm)	Difference ^{1, 2} (cm)	Difference ^{1, 2} (inches)
1	1261	1258	3	1.2
2	1121	1119	2	0.8
3	1268	1260	8	3.1
4	1262	1269	-7	-2.8
5	1251	1248	3	1.2
6	1128	1126	2	0.8
7	1130	1133	-3	-1.2
8	1259	1255	4	1.6

¹ manual measure – scanner measure

² maximum error from 4 scans

- The maximum difference between the manual length and scanner length on any log was 8 cm (3.1 inches).
- The difference between the manual and scanner lengths was less than 10 cm (3.9 inches) on 100% of the logs.

Manual diameter- scanner diameter

Manual-scanner diameter (+,-) classes mm

 The difference (+ or -) between the manual and scanner measurements was 1.0 cm (0.39 inches) or less in 93% of the diameters.

Poor scanner diameter measure occurred in 2 scans of one log

- One log's crooked shape produced poor contact with the feed rollers causing it to move during scanning.
- Extreme movement meant the log moved out of the "scan window" affecting diameter measure.
- Springer Microtec feels minor modifications to their software can ensure accurate diameter measure when there is excessive log movement.

Factors not affecting scanner measurement

- Scanner measuring accuracy was not affected when:
 - Logs were scanned butt forward compared to top forward.
 - Scanning occurred concurrent with debarking.
 - A log's forward movement was stopped and then restarted during scanning.

Acorn mill trial summary

- The difference between the manual and scanner length measurements (manual – scanner) was less than 10 cm (3.9 inches) in 100% of the lengths.
- The difference between the manual and scanner diameter measurements (manual – scanner) was 1 cm (0.39 inches) or less In 93% of the diameters.
- The difficulty obtaining an accurate diameter measuring over protruding knots or missing wood will help Measurement Canada in developing test procedures.

Summary of Ladysmith and Acorn scanner trials

- The trials showed both scanners would meet B.C. Provincial scaling accuracy requirements of 1.0 cm (0.39 inches) on diameter and 10 cm (3.9 inches) on length.
- They helped Measurement Canada develop procedures for testing scanners at sawmills.

Status of Measurement Canada scanner certification

- Measurement Canada has finalized procedures for testing and certifying scanners.
- Scanner certification requires 2 steps:
 - Scanner testing at Measurement Canada's Ottawa lab
 - Testing the scanner after site installation
- Scanner manufacturers can now apply to have their scanner certified by Measurement Canada.

Meeting a major B.C. Provincial requirement for scanner scaling

- Provincial regulations require volume by species and grade. The scanner only provides volume.
- 2 procedures were developed for meeting species and grade.
- A scaler observes each log as it is scanned and records species and grade.
- 2. The species and grade proportion from a scaled sample load is applied to the scanned volume of many loads.

© 2015 FPInnovations. All rights reserved. Copying and redistribution prohibited. 🖲 FPInnovations, its marks and logos are trademarks of FPInnovations

Scanner scaling pilot project

- B.C. Ministry of Forest Lands and Natural Resource Operations is now accepting applications for scanner scaling pilot projects.
- The pilot project will be for a one year period.
- Interfor's Acorn sawmill is planning to begin a scanner scaling pilot project this summer.

Peter Dyson Peter.dyson@fpinnovations.ca

www.fpinnovations.ca

© 2015 FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations.