

HIGH-SPEED COMPUTED TOMOGRAPHY

PASSION - INNOVATION - DEDICATION

RADIOGRAPHY VS. COMPUTED TOMOGRAPHY

RADIOGRAPHY RETURNS A TWO-DIMENSIONAL VIEW OF AN OBJECT

CT CAN "SEE" THE THIRD DIMENSION OF THE OBJECT

	ADDING VALUE TO THE TIMBER-LOG PROCESSING CHAIN
LOGEYE	MULTIPLE LOG RADIOGRAPHY
CT.LOG	COMPUTED TOMOGRAPHY FOR LOGS

BRIXEN

www.microtec.eu

MULTI-VIEW APPROACH WITH MULTIPLE X-RAY LEVELS

X-RAY TECHNOLOGY

For over 33 years, Microtec develops systems for the recognition of wood characteristics and for increasing value of both, manufacturing process and the final products. In the past 15 years the X-ray technology for timber-logs and sawn-wood has been a milestone in the wood processing industry.

1995: X-RAY SCANNER FOR SAWN-WOOD (*GOLDENEYE*)

2000: X-RAY SCANNER FOR LOGS (*LOGEYE*)

LOGEYE

THE MULTI-VIEW APPROACH

BY USING MULTIPLE X-RAY SOURCES THE MULTI-VIEW SYSTEM IS ABLE TO DETECT INTERNAL STRUCTURES OF LOGS

THE DISCRETE TOMOGRAPHY ALGORITHM IS CAPABLE OF RECONSTRUCTING A SIMPLIFIED MODEL OF THE LOG FOR THE DETECTION OF GENERAL CHARACTERISTIC SUCH AS KNOTTINESS, INTERNODE DISTANCE, KNOTTY-CORE DIMENSIONS, DENSITY,

BRIXEN

VENEZIA LINZ VANCOUVER MELBOURNE

LOGEYE

o Configuration Tools Test				MICROTEC	Length [mm]	4067
					Average Diameter [mm]	247
Scanner 2 No message Service Microtec Service	Not Page User Plot Page			-	Min Knot Kluster Distance [mm]	56
			Length (mm) 4067 Average Diameter (mm) 247	Sensor 1	Max Knot Kluster Distance [mm]	322
00 Table 76	per: 3036 00 22	diam: 6.0 diam: 0.6	Average Diameter [mm] 247 Min Knot Kluster Distance [mm] 56	M	Median Knot Kluster Distance [mm]	144
00 T	per: 3663-164	diam: 23.4	Max Knot Kluster Distance [mm] 322 Median Knot Kluster Distance [mm] 144		Mean Inter-Kluster Distance [mm]	68
00	per: 9429-2	diam: 18.7 diam: 10.4	Mean Inter-Kluster Distance [mm] 68		Knots Free Surface [%]	35
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	per: 3248-32	diam: 23.7	Knots Free Surface [%] 35 Number of Knotty Whorls 30		Number of Knotty Whorls	30
00 Hereita (1990)	per: 0004 710	diam: 10.9 diam: 10.1	Mean Knot Diameter (mm) 17	159.8 kV 10.0 mA 1002 fps	Mean Knot Diameter [mm]	17
00	per: 2003.42	diam: 20.3	Mean Knot Volume in Cluster [cm3] 240.1 Knot Volume [%] 3.8	, , , , , , , , , , , , , , , , , , , ,	Mean Knot Volume in Cluster [cm3]	
00	per: 2765-20	diam: 21.0	Heartwood Diameter Top [mm] 179	Sensor 2	Knot Volume [%]	3.8
C	per: 2000-27	diam: 7.6	Heartwood Taper [mm/m] 0.0 Heartwood Volume [%] 51.5			
C	por 2402 25	diam: 25.0	Density (Kg/m^3) 631		Heartwood Diameter Top [mm]	179
00 g	pes: 2310-22	diam: 34.3	Bark Thickness Top (mm) 4.1 Bark Thickness Bottom (mm) 4.9	-	Heartwood Taper [mm/m]	0.0
			Ring Width [mm] 2.5		Heartwood Volume [%]	51.5
00 L	per 1988-20 <mark>01-200-200-200-200-200-200-200-200-200-2</mark>	diam: 27.7	Top Break False Foreign Object False	160.0 kV 10.0 mA 1002 fps	Density [Kg/m ³]	631
00 r 134	pos: 1820. 900	diam: 13.5 diam: 10.8	Log Weight [kg] 119.1	0.0 Conveyor speed [m/min]	Bark Thickness Top [mm]	4.1
			Flot False Metals, first position [cm] -1.0		Bark Thickness Bottom [mm]	4.8
	per: 1533-152	diam: 44.0 diam: 12.2	Metals, last position [cm] -1.0	Photocell	Bing Width [mm]	2.5
				\sim	Top Break	Fals
00 g: 409	por: 1163-121	diam: 27.4 diam: 19.1			Foreign Object	Fals
00 C	pes: 1001-103	diam: 8.7				
0 C	por: 05490	diam: 19.0 diam: 8.1			Log Weight [kg]	119.
	por: 605.95	diam: 36.5			Rot	Fals
10 mil 130	por: 403-94	diam: 6.9 diam: 8.6			Metals, first position [cm]	-1.0
00 V V V V V V V V V V V V V V V V V V	pes 246(3)	diam: 0.1			Metals, last position [cm]	-1.0
00 1 142	post 10 ya pas	diam: 6.0				
0 He 190	por 70 000	diam: 6.0 diam: 6.0				
0 50 100 150 200 250 300 350 -	400 450 500 550 600 650 700 750 800 6	850 900 950 1000				

LOGEYE

www.microtec.eu

VENEZIA LINZ VANCOUVER MELBO

BRIXEN

LOGEYE

SCA TUNADAL/SWEDEN

TOMOLOG: X-RAY SCANNING FOR DETERMINING INTERNAL WOOD CHARACTERISTICS

SCREENLOG-PLUS: COLOR SCANNING AND LASER TRIANGULATION FOR 3D RECONSTRUCTION

COMPUTED TOMOGRAPHY

BRIXEN

www.microtec.eu

INDUSTRIAL HIGH-SPEED CT-TECHNOLOGY FOR THE ULTIMATE ADDED VALUE OF LOGS

COMPUTED TOMOGRAPHY – THE TECHNOLOGY

COMPUTED TOMOGRAPHY

RECONSTRUCTION OF THE AXIAL IMAGE AFTER THE TOMOGRAPHIC INVERSION (RADON TRANSFORM) OF THE SINOGRAM

COMPUTED TOMOGRAPHY - FIRST TRIALS

FIRST LOG IN A CT SCANNER : IMATRON (CALIFORNIA) 1986 FIRST FULL LOG SCANNED: LOUSIANA STATE UNIVERSITY 1994

CT.LOG

CONE BEAM CAT-SCANNER AT THE WOOD RESEARCH CENTER OF FREIBURG GERMANY (FVA)

OPERATIONS WERE STARTED OCTOBER 2007.

THE MACHINE IS USED FOR DEVELOPING AND VALIDATING THE ALGORITHMS FOR THE **LOGEYE** BY DELIVERING THE REFERENCE AND SIMULATING DIFFERENT PROJECTIONS FOR AN OPTIMAL CHOICE OF NUMBER AND ANGULAR DISTANCE OF THE MULTI-VIEW PROJECTIONS

CT.LOG

FIRST FULL SCAN

LARGE CONE BEAM COMPUTED TOMOGRAPHY

LARGE CONE BEAM COMPUTED TOMOGRAPHY

CT.LOG: one scanner for the internal inspection of multiple wood properties of each log during production

Pith

Pith Sound Knots

Pith Sound Knots Dead Knots

Pith Sound Knots Dead Knots Splits

Pith Sound Knots Dead Knots Splits Resin Pockets

Annual ring spacing Compression wood Bark enclosures Specie recognition Under bark shape

BRIXEN

CT.LOG Virtual Sawing

CT data can be used to analyze and evaluate different production strategies for each log

All possible cutting pattern can be simulated

Wood properties detected

CT.LOG Virtual Sawing Virtual boards and wood properties intersected

Each board analyzed

Density image of a virtual board

Intersection of wood properties with a virtual board

Comparison with the real sawn board

BRIXEN

www.microtec.eu

CUSTOMER INSTALLATIONS

CT.LOG INSTALLATION IN NORTH-AMERICA

INSTALLATION: JULY 2012 CONVEYING SPEED: 3 M/MIN WOOD SPECIES: CHERRY, WALNUT, MAPLE, OAK

CT.LOG INSTALLATION IN NORTH-AMERICA

APPLICATION:

- FULL DIGITAL LOG DESCRIPTION INCLUDING INTERNAL WOOD CHARACTERISTICS
- AUTOMATED QUALITY AND VALUE DETERMINATION WITH OPERATOR CONFIRMATION
- MANUAL GRADING AND SORTING BASED ON QUALITY, VALUE AND OPTIMISED CUTTING-PATTERN
- MANUAL CUTTING-PATTERN AND BREAK-DOWN OPTIMIZATION BASED ON INTERNAL QUALITY
- LOG-FRONT MARKING FOR CORRECT SAW-INFEED

VENEZIA · LINZ · VANCOUVER · MELBOURNE

www.microtec.eu

BRIXEN

CT.LOG INSTALLATION IN NORTH-AMERICA

RECOGNITION OF:

- KNOTS
- INSECTS HOLES
- INTERNAL CRACKS
- ROT PRESENCE
- BARK INCLUSIONS
- GRAIN PATTERNS
- VISUAL DEFECTS
- PITH IDENTIFICATION
- FOREIGN BODY DETECTION

INSTALLATION:SEPTEMBER 2012CONVEYING SPEED:60 M/MINWOOD SPECIES:RADIATA PINE

APPLICATION:

- FULL DIGITAL LOG DESCRIPTION INCLUDING INTERNAL WOOD CHARACTERISTICS
- REAL-TIME GRADING AND SORTING BASED ON QUALITY, VALUE AND OPTIMISED CUTTING-PATTERN
- REAL-TIME CUTTING-PATTERN AND BREAK-DOWN OPTIMIZATION BASED ON INTERNAL QUALITY

RECOGNITION OF:

- KNOTTY WHORLS POSITION
- PRUNED LENGTH
- KNOTTY CORE DIAMETER
- KNOT DIAMETER EVALUATION
- BIRD-EYE PRESENCE
- SAPWOOD/HEARTWOOD DENSITY
- INTERNAL PITH POSITION, ECCENTRICITY
- LOW DENSITY ROT IDENTIFICATION
- EXTERNAL AND INTERNAL CRACKS
- FOREIGN BODY DETECTION

INSTALLATION:DECEMBER 2012CONVEYING SPEED:120 m/minWOOD SPECIES:SPRUCE, FIR, PINE

APPLICATION:

- FULL DIGITAL STEM DESCRIPTION INCLUDING INTERNAL WOOD CHARACTERISTICS FOR STEMS UP TO 25 M
- REAL-TIME GRADING AND SORTING BASED ON QUALITY, VALUE AND CUTTING-PATTERN OF LOGS
- REAL-TIME BUCKING OPTIMIZATION FOR STEMS UP TO 25 M BASED ON INTERNAL QUALITY

RECOGNITION OF:

- SPECIES RECOGNITION
- SINGLE KNOT IDENTIFICATION AND MEASURE
- WHORLS CHARACTERIZATION
- SAPWOOD/HEARTWOOD DETECTION
- INTERNAL PITH POSITION, ECCENTRICITY
- DENSITY AND WEIGHT MEASUREMENT
- RING WIDTH DISTRIBUTION
- GRAIN SHAPE EVALUATION
- RESIN POCKETS PRESENCE EVALUATION
- ROTTEN LOG IDENTIFICATION
- EXTERNAL AND INTERNAL CRACKS
- SPIRAL GRAIN
- FOREIGN BODY DETECTION

VENEZIA · LINZ · VANCOUVER · MELBOURNE

BRIXEN

FINGERPRINT ID

EXTRACTION OF A FINGER PRINT PROFILE FOR EACH LOG USING **CT** DATA

EXTRACTION OF A FINGER PRINT PROFILE FOR EACH LOG COMBINING TOMOLOG AND DISHAPE INFORMATION

MATCHING OF THE FINGER PRINTS TO IDENTIFY THE CORRECT LOG

FINGER PRINT DATABASE

MATCHING OF THE FINGER PRINTS TO IDENTIFY THE CORRECT LOG

MATCHING PROCESS

MATCHING OF 16.000 LOGS

ROTATION RECOVERY: SIMULATION OF **DISHAPE** AND **TOMOLOG** AT DIFFERENT ANGLES USING **CT.LOG** DATA PROJECTION

TOMOLOG PROJECTION

ANGLE = 0°

SIMULATED **TOMOLOG** PROJECTION BASED ON CT AND ROTATION

MATCHING OF *TOMOLOG* PROJECTION

TOMOLOG PROJECTION

ANGLE = 5°

SIMULATED **TOMOLOG** PROJECTION BASED ON CT AND ROTATION

 $0 \quad 20 \quad 40 \quad 60 \quad 80 \quad 100 \quad 120 \quad 140 \quad 160 \quad 180 \quad 200 \quad 220 \quad 240 \quad 260 \quad 280 \quad 300 \quad 320 \quad 340$

MATCHING OF *TOMOLOG* PROJECTION

TOMOLOG PROJECTION

ANGLE = 350°

SIMULATED **TOMOLOG** PROJECTION BASED ON CT AND ROTATION

VENEZIA LINZ VANCOUVER MELBOURNE

BEST ANGLE MATCHED

TOMOLOG PROJECTION

SIMULATED *TOMOLOG* PROJECTION BASED ON CT AND ROTATION

ANGLE = 123°

EXAMPLES OF ANGULAR MATCHING OBTAINED FROM SOME LOGS. THE MINIMUM CORRESPONDS TO THE ANGLE IN THE ORIGINAL **CT** DATA.

VENEZIA LINZ VANCOUVER MELBOURNE

BRIXEN

CLOSING THE LOOP VIRTUAL SAWMILL

10A. INTEGRATION BETWEEN BREAKDOWN MACHINERY SOFTWARE AND CT.LOG

CT.LOG

25 100

CUTTING PATTERN EVALUATION

- Based on the diameter, the appropriate cutting pattern is selected
- Each cutting pattern is evaluated for each angle (step of 2°)
- The optimal rotation is selected in order to obtain the maximal price from boards
- Each board is classified and priced based on the defects on the 4 surfaces: sound knots, dead knots, wane, splits, resin pockets.

• Virtual sawmill approach: the cutting pattern is rotated and each single board is priced

Prices:

Board id: 3837 : 7 : PL / VL : Board id: 3838 : 7 : PL / VL : Board id: 3839 : 15 : PL / VL : Board id: 3840 : 18 : PL / VL : Board id: 3841 : 7 : VI : Board id: 3842 : 1 : Chip :

Total price: 55€

45°

Prices:

Board id: 20 : 1 : Chip : Board id: 21 : 7 : VI : Board id: 22 : 1 : Chip : Board id: 23 : 18 : PL / VL : Board id: 24 : 7 : VI : Board id: 25 : 7 : VI :

Total price: 41€

Board id: 3907 : 7 : VI :

Board id: 3908 : 7 : VI :

Board id: 3909 : 18 : PL / VL :

Board id: 3910 : 18 : PL / VL :

Total price:

Board id: 3911 : 1 : Chip :

Board id: 3912 : 7 : VI :

58€

Prices:

Board id: 3920 : 7 : VI : Board id: 3921 : 7 : VI : Board id: 3922 : 18 : PL / VL : Board id: 3923 : 18 : PL / VL : Board id: 3924 : 1 : Chip : Board id: 3925 : 1 : Chip :

Total price: 52€

- Rotation optimization based only on external shape
- Assuming board without knots or other internal defects
- Filtered to consider mechanical positioning errors

- Rotation optimization using internal knot evaluation (CT)
- Estimation of the real price of each board in the cutting pattern
- Filtered to consider mechanical positioning errors.

- Optimal angle based on external shape doesn't coincide with the optimal angle for price.
- Using CT optimisation the price of the boards increases from 30,2€ to 43,8€

- Optimal angle based on shape: 84°. Price 148.8 €
- Optimal angle based on CT: 155°. Price 168.9 €

VENEZIA LINZ VANCOUVER MELBOURNE

BRIXEN

CLOSING THE LOOP VIRTUAL PEELING

VIRTUAL PEELING

TEST DESCRIPTION

Logs used: 50 pruned radiata pine from Arauco scanned with with the CT.LOG

Evaluation of the clear volume obtained with 2 different alignment methods:

- 1. Alignment based on the maximal cylinder contained in the log (using external shape)
- 2. Alignment based on the maximization of the clear volume in function of the effective knots position (using CT data)

Conventions for the longitudinal view images

Peeling comparison on log 6

N log	sed	led	length	DJAS	JAS		perfect diam	kcd	vol clean	Yield	increment with CT
6	396	450	2170	38	0.313	OPTIMIZED WITH SHAPE	378	263	0.126	40%	11.1%
						OPTIMIZED WITH CT	364	225	0.139	45%	

Log 6 / 1

Peeling comparison between optimization based on external shape and CT.LOG

Log 6 / 2

Peeling comparison between optimization based on external shape and CT.LOG

VENEZIA LINZ VANCOUVER MELBOURNE

Peeling comparison on log 10

N log	sed	led	length	DJAS	JAS		perfect diam	kcd	vol clean	Yield	increment with CT
10	440	516	2190	44	0.424	OPTIMIZED WITH SHAPE	418	274	0.171	40%	9.2%
						OPTIMIZED WITH CT	405	235	0.187	44%	

VENEZIA LINZ VANCOUVER MELBOURNE

Peeling comparison on log 21

N log	sed	led	length	DJAS	JAS		perfect diam	kcd	vol clean	Yield	increment with CT
21	307	353	2190	30	0.197	OPTIMIZED WITH SHAPE	298	227	0.064	33%	24.6%
						OPTIMIZED WITH CT	288	191	0.080	41%	

Log 21/1

www.microtec.eu

Log 21/ 2

Log 21/3

Peeling comparison between optimization based on external shape and CT.LOG

INNOVATING WOOD

Log 21/4

$G {\sf LOBAL} \; {\sf RESULTS} \; {\sf ON} \; {\sf ALL} \; {\sf LOGS}$

Alignment method	Total clear volume (m ³)	Expected increment with CT.LOG		
Optimization with shape	7.38	+7.1%		
Optimization with CT.LOG	7.90			

THANK YOU!

FEDERICO.GIUDICEANDREA@MICROTEC.EU

F

P.