Measurement of wood energy assortments in Sweden

Lars Björklund SDC/VMU Timber Measurement Development Uppsala, Sweden

Increasing consumption of wood energy assortments – now approx 10 milj m³ per year

Roundwood

Small trees

Tops and branches

2

A new measurement law in 2015

- Will include all assortments, also energy, but only when sold from the forest owner.
- Only "evaluated" methods and equipment may be used
- Measuring companies must have internal control and show that accuracy requirements are fulfilled

This triggers more focus on the development of techniques and methods for measurement of energy assortments

Organisation of timber measurement in Sweden

Operational organisations (private sector)

Two of SDCs departments

Development of timber measurement (VMU)

- Development projects of national interest
- Measurement instructions

Organisation of wood measurement in Sweden

Assortments / measurement method / trading units

Most roundwood for energy is measured as manual measurement of piles on trucks

Volume under bark: Length x Width x Height x Estimated wood volume percent

Four alternatives:

- 1. Timber Measurement Association at "equipped" measurement station
- 2. Remote measurement using cameras
- 3. Measurement by truck drivers
- 4. Weight scaling, conversion to volume

Control (check scaling) of pile measurement is done as log-by-log measurement

Remote measurement using cameras – installation at SCA's terminal in Sundsvall

- Cameras for measurement of log length and pile height
- Cameras to see end faces of the piles, for id-marking, quality etc

All cameras can be used to determine solid volume percent, species etc

Remote measurement – example with nine cameras

Three cameras for height and log length.

Six cameras for pile end faces. Used for estimation of wood volume percentage, rot, marking etc.

The driver and the scaler

The driver

All photos displayed on a screen.

The driver approves quality of the photos.

He is informed if there is a sample for log-by-log measurement.

The scaler

Measurement on the screen.

Can be done from another place or at another time.

Measurement by truck drivers

Daily conversion factors weight/volume, So far only used for pulpwood

Both alternatives often less accurate compared to trained scalers

- Roundwood: solid • volume
- Chips: loose • volume
- Small trees or tops and branches: no volume

Energy assortments – we need weight scaling - always and everywhere

We need to follow Finland and

Photo © LoadMaster, Cool-ManOy

Photo @ John Deere Oy

Photo @ TamtronOy

Photo © PonsseOy

North America

Accuracy of Log Truck Onboard Weigh Scales

Peter Dyson

27.9.2010

METLA

15

Weight scaling – ongoing studies in Sweden

Grapple weighing in forwarders or timber trucks

Dynamic weighing

Sensitivity tests

Purchase of tops and branches by dry tons. Guesstimate of moisture content using cameras, chipped samples for MC determination

Chipped forest fuel

- Roundwood
- Whole trees
- Tops and branches
- Stumps
- Energy forest
- Bark
- Saw dust
- Recycled wood

Which trading unit? Volume (m³ loose volume in containers) or dry tons or energy content (MWh)?

Measured when delivered in containers on trucks or railroad

Measurement of loose volume might be phased out and replaced by dry tons

Today's manual measurement. Height per section.

Problems

- Easy measurement but difficult to perform controls
- A trading unit that depends on:
 - 1. Transport distance
 - 2. Chipping equipment

Control: Laser measurement at many points

Dry tons or MWh requires determination of moisture content

Which measurement accuracy will we have given prerequisites like:

- Sampling method
- Number of samples
- Size of a sample
- Assortment
- Chipping equipment
- Method when loading/transporting
- Season (time of the year)

Measurement accuracy a result of statistical analyses

Sampling for moisture content - the key to dry tons or MWh

Near Infra Red NIR probe

Mechanical probe

Material for analysis of more than moisture

Manual sampling at scaling station

or after off-loading

Manual sampling most common

Manual sampling at a measurement station. Use a correct shovel.

Sampling after off-loading. Commonly done by the drivers, or by the personnel at the heating plants.

An example of a field laboratory for MC-analyses

- A mobile container with drying ovens
- Installed at a couple of small measurement stations

23

Example on the result of bad samling

- VMU = 20 well distributed MC samples
- Part = sampling by the driver •

Measurement accuracy (dry weight) for a contract, given a certain sampling, chipped logging residues

Number of	Samples	Number of trucks in the same contract					
sampled	per truck	container	1	2	5	10	20
trucks		Mean error for the contract %					
1	3	4,5	5,5	7,1	7,9	8,1	8,3
]	6	3,4	4,1	6,1	7,0	7,3	7,4
]	10	2,9	3,4	5,6	6,6	6,9	7,1
2	3	-	-	3,9	5,2	5,6	5,8
]	6	-	-	2,9	4,5	4,9	5,1
]	10	-	-	2,4	4,2	4,7	4,9
5	3	-	-	-	2,4	3,2	3,5
]	6	-	-	-	1,8	2,7	3,1
	10	-	-	-	1,5	2,5	2,9
10	3	-	-	-	-	1,7	2,2
]	6	-	-	-	-	1,3	1,9
]	10	-	-	-	-	1,1	1,8
20	3	-	-	-	-	_	1,2
]	6	-	-	-	-	_	0,9
	10	-	-	-	-	_	0,7
			will not ful	fill accurac	y demands		
		Ŏ	will fulfill accuracy demands with 95 % probability				
		Ŏ	will fulfill accuracy demands with 99 % probability				

Basic demands for loose volume

- "Pre-measured" containers
- Control using special equipment

Basic demands for weight + MC content

- Approved weighing
- Control MC samples after off-loading

The future,

Well, in 1984 the Swedish Timber Measurement Council declared:

"All energy assortments should be measured and traded based on their dry weight"

That might come in the future!

Pulpwood or roundwood for energy: Two main areas for development

Measurement in photos

Krokom

Should be cheaper

Small measurement stations can be open 24/7

Automatic measurement - Mabema

Braviken

Should be better and quicker

Big measurement stations, maybe also for sawlogs

Finland has Modus and AVM-stations

Automatic measurement of piles on trucks

- Laser triangulation (like in a log scanner)
- Developed by Mabema in Linköping

Our biggest development project

Laser triangulation for solid volume

Cameras from three sides and from a certain angle for description of pile end face. In total six sets of cameras and lasers.

Accuracy goal: standard deviation per pile < 6 %

30

The situation in 5-10 years?

Measurement in photos

- Many of the smaller measurement stations, incl wood energy terminals
- Also at bigger measurement stations for prolonged opening hours

Automatic pile measurement

- Many of the pulpmills
- Some sawmills (eg mills sawing standard lengths)

The four alternativs to measure wood volume under bark

TMA at "equipped" me	easurement station	Remote measurement using cameras		
Positive	Negative	Positive	Negative	
Well trained personnel	High cost	Well trained personnel	Risk for slightly reduced accuracy	
Can be TMA	Limited opening hours	Low cost	Width of truck (pile length) cannot be measured	
		Can be TMA		
		Flexible opening hours, can be 24/7		

Measurement by truck	drivers	Weight scaling, conversion to volume			
Positive	Negative	Positive	Negative		
Low cost	Less accurate	Weight "for free" when loading	Low accuracy for conversion factors		
No need for meas.station	Individual differences		Much log-by-log measurement for conversion accuracy and/or controll		
	Difficult to organise control				
			Lack of control procedures for crane weight		

Moisture content measurement with NIR-probe

The probe can be freely positioned within the container

Five installations in Sweden - more will probably follow

33

Mechanical probe for MC-sampling

- Three (old) installations in Sweden
- Press down to wanted depth, filled when turning back

