

#### Creating forest sector solutions

www.fpinnovations.ca



Laser Log Scanning<br/>TrialPeter DysonResearcher, Forest Operations<br/>Coeur d' Alene , Idaho<br/>April 11, 2012

© 2009 FPInnovations. All rights reserved. Copying and redistribution prohibited. ™ FPInnovations, its marks and logos are trademarks of FPInnovations.

### Introduction

- Forestry companies are investigating new scaling methods to reduce costs while maintaining scale accuracy.
- A potential new scaling method is using laser log scanning technology.
- Laser scanners are used in British Columbia sawmills to optimize cutting programs.



### **Study objectives**

- Evaluate the log scanner's measuring precision on log top diameter, butt diameter and length
- Compare manual (stick) scaled log volume to scanner scaled volume
- Compare historical mill records of scanner scaled volume to stick scaled volume

### Study site and methods

- The study took place in Sept. 2011 near Vancouver, British Columbia.
- The logs were first manually scaled at Pacific Custom sortyard.
- The logs were then bundled and towed to International Forest Product's (Interfor) Acorn sawmill.
- At Acorn the logs were debarked and then scanned by a laser log scanner.



### Scaling and scanning the logs

- 68 (130 m<sup>3</sup>) (25.4 MFBM <sup>1</sup>) of second growth sorted Western Hemlock and balsam logs were used in the trial.
- Three scalers scaled each log log 3 times.
- Each log was scanned 3 times at the sawmill.



<sup>1</sup>Conversion =1MFBM=5.128 m <sup>3</sup>



### **Microtec laser log scanner**

#### DiScan scanning heads



Images courtesy of Microtec Industries

#### Typical scanner installation





28/05/2012

### Scanner and scaler measurements

- The scanner measures diameter in millimetres (1mm = 0.04 inches) and length in cm (1 cm = 0.4 inches)
- The scalers measured diameters in 2 cm classes and length to the nearest 10 cm (4 inches).
- The scanner measurements were converted to the same units as the scalers in order to compare the two scaling methods.



## Difference <sup>1</sup> between scaler and scanner measured top diameter.

•The difference between scaler and scanner measured top diameter was 2.0 cm (0.8 inches) cm or less in 98% (200) of the measurements.



<sup>1</sup> Difference = scaler diameter – scanner diameter

### Scanner top diameter precision<sup>1</sup>

•In 97% of the logs the scanner measured the top diameter to a precision of 1 cm (0.4 inches).



<sup>1</sup> Maximum diameter – minimum diameter from 3 scans

### Scanner butt diameter precision <sup>1</sup>

•In 25 % of the logs the scanner measured the butt diameter to a precision of 1 cm (0.4 inches).



# Why did the scanner measure the butt diameter less precisely than the top?

- The scanner measured top diameters are "filtered" by an algorithm that uses the average and a regression to calculate the most accurate measurement for the top diameter.
- This algorithm was not used when calculating the butt diameter and this caused more variation in the butt diameter measurement.
- Microtec said precision of butt diameter measurements will be similar to the top diameter precision when the algorithm is applied.

### Length precision <sup>1</sup>

•In 59 % of the logs the difference between repeated scans was 5 cm (1 inch) or less

| Precisio | on category cm<br>(inches) | No. of logs | % of total |  |
|----------|----------------------------|-------------|------------|--|
| 0-2      | (0 -0.8)                   | 21          | 31         |  |
| 3-5      | (1.2 - 2.0)                | 19          | 28         |  |
| 6-8      | (2.4 -3.1)                 | 8           | 12         |  |
| 9-11     | (3.5 - 4.3)                | 8           | 12         |  |
| 12       | (4.7)                      | 12          | 17         |  |

• <sup>1</sup>Maximum length – minimum length from 3 scans of each log

### Scanner lengths versus scaler's lengths

 There was no difference<sup>1</sup> between scaler and scanner lengths in 56 % (114) of the measurements.



**FP**Innovations

# The debarkers proximity to the scanner affected scanner length measuring

- Scanner measures length using a photocell and encoder mounted on a conveyor chain.
- The debarking arms held the log back while the chain conveyor was trying to move the log forward causing the log to "slip" on the conveyor.
- Log "slippage" on the conveyor caused the encoder to record an incorrect length.
- At other sawmills Microtec has found length is measured accurately to 2 cm.



### **Volume calculation formulas**

### Segment

log length



calculation of the single cross-sectional area:

radiuses r1, r 2, r 3, ..., r n are calculated in 5° steps (for example) A = area of each sector

 $A = \frac{r^{4} \times \pi \times \alpha}{360^{\circ}}$ csa = total cross-sectional area

csa = A 1 + A 2 + .... + A n

### Smalian's

V=(A1+A2)/2 XL

V=volume

A1=area of small end the of log.

A2 = area of the large end of log.

L= length

#### calculation of the physical volume:

The total cross-sectional areas csa 1, csa 2, csa 3, ... csa n are calculated in 10cm (4 ") steps (for example)

V 1, V 2, V 3, ... V n, V n+1 are calculated for each section (frustum)

V = total volume of the log

V = V1 + V2 + V3 + ... V n + V n+1

cm

V n+1



osal osal osal

### Average load volume

| Load | Scaler 1<br>(m <sup>3</sup> ) | Scaler 2<br>(m <sup>3</sup> ) | Scaler 3<br>(m <sup>3</sup> ) | Scanner<br>segment<br>formula<br>(m <sup>3</sup> ) | Scanner<br>Smalian's<br>formula<br>(m³) | Maximum<br>difference scanner<br>(segment formula)<br>compared to<br>scalers<br>(m <sup>3</sup> ) | Maximum<br>difference<br>scanner<br>(Smalian)<br>compared to<br>scalers<br>(m <sup>3</sup> ) |
|------|-------------------------------|-------------------------------|-------------------------------|----------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 1    | 44.50                         | 44.14                         | 44.11                         | 44.77                                              | 41.14                                   | 0.66                                                                                              | 3.36                                                                                         |
| 2    | 46.82                         | 47.01                         | 46.86                         | 47.33                                              | 44.05                                   | 0.51                                                                                              | 2.96                                                                                         |
| 3    | 47.2                          | 48.48                         | 48.1                          | 49.92                                              | 45.74                                   | 2.72                                                                                              | 2.74                                                                                         |



### Scale of individual logs

•There was less variation in scanner (segment formula) log volume than scaler (Smalian's formula) volume.



## Difference between stick and scanner scaled boom volume

• On larger volumes there was only a small difference between stick and scanned volume.

| Sort      | Booms # | Logs # | Stick scaled<br>volume (m <sup>3</sup> ) | Scanned<br>volume (m <sup>3</sup> ) <sup>1</sup> | Difference (m <sup>3</sup> )<br><sup>2</sup> | Difference (%) <sup>3</sup> |
|-----------|---------|--------|------------------------------------------|--------------------------------------------------|----------------------------------------------|-----------------------------|
| Thrifty   | 43      | 36 215 | 60 434                                   | 60 465                                           | -31                                          | - 0.1                       |
| Standard  | 29      | 10 781 | 22 488                                   | 22 669                                           | -181                                         | - 0.8                       |
| Mix       | 7       | 1 458  | 2 870                                    | 2 848                                            | 22                                           | 0.8                         |
| All Other | 2       | 354    | 977                                      | 928                                              | 49                                           | 5.0                         |
| Utility   | 1       | 215    | 468                                      | 487                                              | -19                                          | - 4.5                       |
| Total     | 82      | 49 023 | 87 237                                   | 87 396                                           | -159                                         | - 0.2                       |
|           |         |        |                                          |                                                  |                                              |                             |

•<sup>1</sup>Volume calculated from segment formula.

<sup>[2]</sup> Stick scaled volume – scanner volume

<sup>[3]</sup> (Stick scaled volume-scanner volume)/stick scaled volume x100

### Summary

- The scanner measured log top diameters precisely and as accurately as the scalers.
- The scanner measured individual log volume more consistently and with less variation than the scalers.
- The scanner scale of load volumes was similar to the scalers.
- The difference in scale volume between the scanner and stick scaling was of 0.2% on 87 237 m<sup>3</sup> (82 log booms).

### **Continuing work on scanner scaling**

 The Canadian Standards Association Technical Committee on Scaling of Primary Forest Products is working to develop a national measurement standard for electronic/laser type scanners.

### **Continuing work on scanner scaling**

- The Canadian Standards Association Technical Committee on Scaling of Primary Forest Products is working to develop a national measurement standard for electronic/laser type scanners.
- The standard will likely focus on the measuring accuracy of log top and butt diameter and length.

### **Continuing work on scanner scaling**

- The Canadian Standards Association Technical Committee on Scaling of Primary Forest Products is working to develop a national measurement standard for electronic/laser type scanners.
- The standard will likely focus on the measuring accuracy of log top and butt diameter and length.
- Measurement Canada will test and certify scanners to ensure they meet this standard.

### Thank you

