Converting between

Western North American

 log scaling methods
BC Firmwood and

Northwest \log Rules Cubic

Neal Hart Jendro \& Hart, LLC Sunriver, Oregon Timber Measurement Society Annual Meeting, April 2013

Today I'll discuss:

1 How Smalian's formula tends to overstate cubic volume where butt dia. is > 30\% larger than top

2 How NWLR's 0.7 inch diameter correction factor overstates Scribner diameter bias in today's harvest

3 How Scribner's truncation of fractional diameters causes significant variability in NWLR Cubic volumes

4 That improving accuracy of NWLR Cubic requires adoption of unbiased diameter measurement

If BC Firmwood and Northwest Log Rules Cubic scales gave the same results...

The conversion between them would be the ratio of their measurement units, or $35.315 \mathrm{cf} / \mathrm{m}^{3}$:

$$
1 \text { meter }=3.28084 \text { feet }
$$

$$
3.28084 \text { feet cubed }=35.31467 \text { cf }
$$

If BC Firmwood and Northwest Log Rules Cubic scales

 gave the same results...

If BC Firmwood and Northwest Log Rules Cubic scales

 gave the same results...

What causes variance in the ratio between
BC Firmwood and Northwest Log Rules Cubic Scales?

BC Firmwood

Formulas Smalian's CxLx $\left(\mathrm{dr}^{2}+\mathrm{d}_{2}{ }^{2}\right) / 2$

Diameter Nearest 2 cm
Length Nearest dm
Deducts Unsound Only

NW Log Rules
Two-End Conic
$\mathrm{CxLx}\left(\mathrm{dr}^{2}+\mathrm{d}^{2}+(\mathrm{d} \mathrm{x} \mathrm{d} 2)\right) / 3$
Scribner + 0.7 in.
Scribner +1 ft *
Unsound - Gross \& Solid - Merch

What causes variance in the ratio between BC Firmwood and Northwest Log Rules Cubic Scales?

BC Firmwood

Formulas

$$
\begin{aligned}
& \text { Smalian's } \\
& \text { CxLx }\left(\mathrm{dr}^{2}+\mathrm{dz}^{2}\right) / 2 \\
& \text { Nearest } 2 \mathrm{~cm} \\
& \text { Nearest dm } \\
& \text { Unsound Only }
\end{aligned}
$$

NW Log Rules
Two-End Conic
CxLx $\left(\mathrm{dr}^{2}+\mathrm{d}^{2}+(\mathrm{drx} \mathrm{d} 2)\right) / 3$
Scribner + 0.7 in .
Scribner + 1 fit **

Unsound - Gross
\& Solicl - Merch

The difference between Smalian's and the

 Two-End Conic formula derives from their estimates of average diameter and is independent of log length (L):
Smalian's $\quad \mathrm{CxLx}\left(\mathrm{d}^{2}+\mathrm{d}_{2}{ }^{2}\right) / 2$

Two-End Conic CxLx $\left(\mathrm{dr}^{2}+\mathrm{d}^{2}+(\mathrm{d} 1 \mathrm{x} \mathrm{d} 2)\right) / 3$

Smalian exceeds Two-End Conic with decreasing log diameter and increasing difference between top and butt diameter

Smalian exceeds Two-End Conic with decreasing log diameter and increasing difference between top and butt diameter

If Top \& Butt Dia. Difference is:
 4 inches:

Two-End Ave. Smalian Ave. \% Diff.

Top Butt Ave. Conic in ${ }^{2}$ Dia. in 2 Dia. in 2	6	10	8.0	65.3	8.1	68.0	8.2	4%

$\square 2.7 \mathrm{in}^{2}$

12	16	14.0	197.3	14.0	200.0	14.1	1%

2.7 in 2

24	28	26.0	677.3	26.0	680.0	26.1	0%

$\mathbf{2 8}$	$\mathbf{3 2}$	30.0	784	1024	896	901.3	30.0	904.0	30.1	$\mathbf{0 \%}$
$\mathbf{3 0}$	$\mathbf{3 4}$	32.0	900	1156	1020	1025.3	32.0	1028.0	32.1	$\mathbf{0 \%}$
$\mathbf{3 2}$	$\mathbf{3 6}$	34.0	1024	1296	1152	$\mathbf{1 1 5 7 . 3}$	34.0	$\mathbf{1 1 6 0 . 0}$	34.1	$\mathbf{0 \%}$

Smalian exceeds Two-End Conic with decreasing log diameter and increasing difference between top and butt diameter

If Top \& Butt Dia. Difference is: 6 inches:

Two-End Ave. Smalian Ave. \% Diff.

| Top | Butt | Ave. | Conic in ${ }^{2}$ | Dia. | $\frac{\text { in }^{2}}{}$ | Dia. | in 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 12 | 9.0 | 84.0 | 9.2 | 90.0 | 9.5 | 7% |

$\square 6.0 \mathrm{in}^{2}$

12	18	15.0	228.0	15.1	234.0	15.3	3%

24	30	27.0	732.0	27.1	738.0	27.2	1%

| 28 | 34 | 31.0 | 784 | 1156 | 952 | 964.0 | 31.0 | 970.0 | 31.1 | $\mathbf{1 \%}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 0}$ | $\mathbf{3 6}$ | 33.0 | 900 | 1296 | 1080 | 1092.0 | 33.0 | 1098.0 | 33.1 | $\mathbf{1 \%}$ |
| $\mathbf{3 2}$ | 38 | 35.0 | 1024 | 1444 | 1216 | $\mathbf{1 2 2 8 . 0}$ | 35.0 | $\mathbf{1 2 3 4 . 0}$ | 35.1 | $\mathbf{0 \%}$ |

The amount Smalian exceeds Two-End Conic increases with the difference between top and butt diameter and with decreasing top diameter

Adjusting for formula difference increases variance

 between BC Firmwood \& Northwest Log Rules Cubic:

What causes variance in the ratio between BC Firmwood and Northwest Log Rules Cubic Scales?

BC Firmwood

S'malian's

Diameter Nearest 2 cm
Length

NW Log Rules
Two-End Conic

Scribner + 0.7 in.
Scribner + 1 ft *
Unsound - Gross
\& Solid - Merch

* Logs 17'+, Scribner + 0.5' for logs $<17^{\prime}$

BC Firmwood

Lengths:
Unbiased - accurate to nearest $1 \mathrm{dm}(\sim 3.9 \mathrm{in})$

Diameters:

Unbiased - accurate
to nearest $2 \mathrm{~cm}(\sim 0.79 \mathrm{in})$

NW Log Rules

Scribner length + trim minimal bias
1.0 ft for $\operatorname{logs} 17^{\prime}+$
0.5 ft for $\operatorname{logs}<17^{\prime}$

Scribner (biased) truncated fractional diameters plus 0.7 in

Basis for 0.7 inch bias correction factor:

- Scribner's truncation of diameter fractions for logs with zero or even-inch ovality:
0.5 in .

Log with "zero" ovality Butt \& Top

Basis for 0.7 inch bias correction factor:

- Scribner's truncation of diameter fractions for logs with zero or even-inch ovality: 0.5 in. Butt

Log with "even-inch" ovality Butt \& Top

Basis for 0.7 inch bias correction factor:

- An additional $0.5^{\prime \prime}$ diameter truncation occurs for logs with odd-inch ovality e.g., $1^{\prime \prime}, 3^{\prime \prime}$, etc.

Butt Top

Log with 1" ovality

Butt \& Top

Basis for 0.7 inch bias correction factor:

- Scribner's truncation of diameter fractions for logs with zero or even-inch ovality: 0.5 in.
- Scribner's additional $0.5^{\prime \prime}$ diameter truncation for logs with odd-inch ovality: 0.2 in .

Additional 0.2 inch bias correction assumes odd-inch ovality occurs almost half the time at both the Top and Butt

Scribner diameter truncation for round logs and logs with ovality

Logs with $1 / 16$ inch ovality

Actual Diameter (in)			Truncated Diameter				Amount	
Narrow	Wide	Averase	Narrow	Wide	Average	Scribner	Truncated	Average
5.9375	6	5.96875	5	6	5.5	5	0.96875^{-7}	
6.0000	6.0625	6.03125	6	6	6	6	0.03125	
6.0625	6.1250	6.09375	6	6	6	6	0.09375	
6.1250	6.1875	6.15625	6	6	6	6	0.15625	
6.1875	6.2500	6.21875	6	6	6	6	0.21875	
6.2500	6.3125	6.28125	6	6	6	6	0.28125	
6.3125	6.3750	6.34375	6	6	6	6	0.34375	
6.3750	6.4375	6.40625	6	6	6	6	0.40625	
6.4375	6.5000	6.46875	6	6	6	6	0.46875	
6.5000	6.5625	6.53125	6	6	6	6	0.53125	
6.5625	6.6250	6.59375	6	6	6	6	0.59375	
6.6250	6.6875	6.65625	6	6	6	6	0.65625	
6.6875	6.7500	6.71875	6	6	6	6	0.71875	
6.7500	6.8125	6.78125	6	6	6	6	0.78125	
6.8125	6.8750	6.84375	6	6	6	6	0.84375	
6.8750	6.9375	6.90625	6	6	6	6	0.90625	
6.9375	7.0000	6.96875	6	7	6.5	6	0.96875	

Scribner diameter truncation for round logs and logs with ovality

Logs with $1 / 8$ inch ovality

Actual Diameter (in)			Truncated Diameter				Amount	
Narrow	Wide	Average	Narrow	Wide	Average	Scribner	Truncated	Average
5.875	6	5.9375	5	6	5.5	5	0.93750	
5.9375	6.0625	6	5	6	5.5	5	1.00000	
6.0000	6.1250	6.0625	6	6	6	6	0.06250	
6.0625	6.1875	6.125	6	6	6	6	0.12500	
6.1250	6.2500	6.1875	6	6	6	6	0.18750	
6.1875	6.3125	6.25	6	6	6	6	0.25000	
6.2500	6.3750	6.3125	6	6	6	6	0.31250	
6.3125	6.4375	6.375	6	6	6	6	0.37500	
6.3750	6.5000	6.4375	6	6	6	6	0.43750	
6.4375	6.5625	6.5	6	6	6	6	0.50000	
6.5000	6.6250	6.5625	6	6	6	6	0.56250	
6.5625	6.6875	6.625	6	6	6	6	0.62500	
6.6250	6.7500	6.6875	6	6	6	6	0.68750	
6.6875	6.8125	6.75	6	6	6	6	0.75000	
6.7500	6.8750	6.8125	6	6	6	6	0.81250	
6.8125	6.9375	6.875	6	6	6	6	0.87500	
6.8750	7.0000	6.9375	6	7	6.5	6	0.9375	

Scribner diameter truncation for round logs and logs with ovality

Logs with $3 / 16$ inch ovality

Actual Diameter (in)			Truncated Diameter				Amount	
Narrow	Wide	Averase	Narrow	Wide	Average	Scribner	Truncated	Average
5.8125	6	5.90625	5	6	5.5	5	0.90625^{-7}	
5.8750	6.0625	5.96875	5	6	5.5	5	0.96875	
5.9375	6.1250	6.03125	5	6	5.5	5	1.03125	
6.0000	6.1875	6.09375	6	6	6	6	0.09375	
6.0625	6.2500	6.15625	6	6	6	6	0.15625	
6.1250	6.3125	6.21875	6	6	6	6	0.21875	
6.1875	6.3750	6.28125	6	6	6	6	0.28125	
6.2500	6.4375	6.34375	6	6	6	6	0.34375	25
6.3125	6.5000	6.40625	6	6	6	6	0.40625	5
6.3750	6.5625	6.46875	6	6	6	6	0.46875	
6.4375	6.6250	6.53125	6	6	6	6	0.53125	
6.5000	6.6875	6.59375	6	6	6	6	0.59375	
6.5625	6.7500	6.65625	6	6	6	6	0.65625	
6.6250	6.8125	6.71875	6	6	6	6	0.71875	
6.6875	6.8750	6.78125	6	6	6	6	0.78125	
6.7500	6.9375	6.84375	6	6	6	6	0.84375	
6.8125	7.0000	6.90625	6	7	6.5	6	0.90625	

Scribner diameter truncation for round logs and logs with ovality

Logs with 1 inch ovality Actual Diameter (in)				Truncated Diameter			Amount	Average
Narrow	Wide	Average	Narrow	Wide	Average	Scribner	Truncated	
5	6	5.5	5	6	5.5	5	0.50000^{-7}	
5.0625	6.0625	5.5625	5	6	5.5	5	0.56250	
5.1250	6.1250	5.625	5	6	5.5	5	0.62500	
5.1875	6.1875	5.6875	5	6	5.5	5	0.68750	
5.2500	6.2500	5.75	5	6	5.5	5	0.75000	
5.3125	6.3125	5.8125	5	6	5.5	5	0.81250	
5.3750	6.3750	5.875	5	6	5.5	5	0.87500	
5.4375	6.4375	5.9375	5	6	5.5	5	0.93750	
5.5000	6.5000	6	5	6	5.5	5	1.00000	.9688
5.5625	6.5625	6.0625	5	6	5.5	5	1.06250	
5.6250	6.6250	6.125	5	6	5.5	5	1.12500	
5.6875	6.6875	6.1875	5	6	5.5	5	1.18750	
5.7500	6.7500	6.25	5	6	5.5	5	1.25000	
5.8125	6.8125	6.3125	5	6	5.5	5	1.31250	
5.8750	6.8750	6.375	5	6	5.5	5	1.37500	
5.9375	6.9375	6.4375	5	6	5.5	5	1.43750	
6.0000	7.0000	6.5	6	7	6.5	6	0.5	

Scribner diameter truncation for round logs and logs with ovality in increments of $1 / 16$ in

Given Scribner diameter truncation just discussed...

What's the impact of Scribner diameter bias on the difference between
BC Firmwood and
Northwest Log Rules Cubic?

Range of Scribner diameter bias relative to BC Firmwood scale:

Variance in cubic volume

 caused by Scribner diameter bias:| Scribner
 Diameter | 40' Log w/1" in 10' Taper | | |
| :---: | :---: | :---: | :---: |
| | BC Firm.
 Minimum | NWLR | BC Firm.
 Maximum |
| 6 | 15.2 | 16.8 | 21.4 |
| | -11\% | | 22\% |
| 7 | 18.2 | 20.8 | 24.9 |
| | -15\% | | 17\% |
| 8 | 21.4 | 25.3 | 28.7 |
	-18\%		12\%
-	-	-	-
30	222.1	233.6	244.6
	-5\%		5\%
31	233.2	248.1	268.1
	-6\%		7\%
32	256.2	263.0	280.3
	-3\%		6\%

Variance in cubic volume

 caused by Scribner diameter bias:| Scribner
 Diameter | 20' Log w/1" in 10' Taper | | |
| :---: | :---: | :---: | :---: |
| | BC
 Minimum | NWLR | BC
 Maximum |
| 6 | 5.5 | 6.5 | 8.2 |
| | -18\% | | 21\% |
| 7 | 6.8 | 8.3 | 10.6 |
| | -22\% | | 22\% |
| 8 | 9.0 | 10.3 | 12.4 |
	-15\%		17\%
30	105.6	109.6	116.5
	-4\%		6\%
31	111.0	116.7	125.1
	-5\%		7\%
32	119.3	123.9	131.0
	-4\%		5\%

Variance in cubic volume

 caused by Scribner diameter bias:

Variance in cubic volume

 caused by Scribner diameter bias:

Variance in cubic volume

 caused by Scribner diameter bias:

Ave. Scribner diameter bias by diameter class $\sim 500,000$ logs exported from BC to US in 2000

Variance in cubic volume using $0.55^{\prime \prime}$ instead of 0.7" correction for Scribner diameter bias:

Variation Due to Scribner Diameter Truncation

To sum things up:
1 Smalian's formula tends to overstate cubic volume where butt dia. is > 30\% larger than top

2 NWLR's 0.7 inch bias correction factor overstates Scribner diameter bias for today's harvest

3 Scribner diameter truncation causes significant variability in NWLR Cubic volumes

4 Improving accuracy of NWLR Cubic requires adoption of unbiased measurement protocol

Some recommendations:

BC Firmwood:

- Adopt Two-End Conic formula

NW Log Rules Cubic:

- Adopt unbiased diameter measurement protocol
- Adopt more representative correction factor for Scribner diameter bias

Questions or Comments?

Neal Hart
Jendro \& Hart, LLC Sunriver, Oregon

Thank You

Neal Hart
Jendro \& Hart, LLC Sunriver, Oregon

